AN Ay HP 75000 Series C

= 7 . V |

bus

HP E1415A

Algorithmic Closed L oop Controller
|

User’s and SCPI Programming Manual

NVhereto Find it - Online and Printed I nfor mation:

System installation (hardware/software) V X1bus Configuration Guide*
HP VIC (VXI installation software)*
Module configuration and wiring This Manual
SCPI programmingc..coeeeeeeeeeeneseeneeees This Manual
SCPI example programs............ccceevevuenene. This Manual, Driver Disk
SCPI command referenceocooeveeeeeecnencnnes This Manual
VXIplug&play programmingcccceeeeveverne. V XIplug&play Online Help
VXIplug&play example programs...................... VXIplug&play Online Help —===
VXlplug&play function reference...................... V XIplug&play Online Help
Soft Front Panel information...........ccccoceeveenee. V XIplug&play Online Help i
VISA language information............c.cceeeereenenne. HP VISA User's Guide
HP VEE programming information.................... HP VEE User's Manua
&S.Jpplied with HP Command Modules , Embedded Controllers, and VXLink. /

A Frcians

Manual Part Number: E1415-90002
Printed in U.S.A. E0896

Contents

HP E1415A Algorithmic Closed Loop Controller (gdition2)

HEWLETT-PACKARD WARRANTY STATEMENT. 13
Trademark Information 13
Safety SymbolS. . ..o 14
WARNINGS. . . 14
Declaration of Conformityc. i e 15
Reader Comment Sheet. 17
Chapter 1
Getting Started 19
About thisChapter 19
Configuringthe HP E1415. i e e e 19
SettingthelLogical AddressSwitch 20
Installing Signal ConditioningPlug-ons. oo, 21
Disabling the Input Protect Feature (optional) 25
Disabling Flash Memory Access (optional) 25
INSErUMENt DIiVErS ..ot e e e e 27
About EXxample Programs. 27
Verifying a Successful Configurationc.co ... 27
Chapter 2

Fled Wiring ... e e 31
About ThisChapter e 31
Planning Your WiringLayout 31
SCP Positionsand Channel Numbers 31
Sense SCPsand Output SCPSo e e 33
Planning for Thermocouple Measurements 34
Terminal Modules 35
TheSCPsand Terminal Module. 35
Terminal ModuleLayout i 35
Reference Temperature SensingwiththeHPE1415...................... 37
Preferred Measurement Connections, 39
ConnectingtheOn-board Thermistor oo 42
Wiring and Attachingthe Terminal Module 43
Attaching/Removing the HP E1415 Terminal Module 45
Adding ComponentstotheTerminal Module 47
Terminal ModuleWiringMap. e e 48

Contents

3

Terminal Module Options.o e e e 49

OPLION ASE ..t e 49
OPtiON ASF . e 51
Faceplate Connector Pin-Signal Lists 53
Chapter 3
Programming the HP E1415for PID Control 55
About ThisChapter i i 55
Overview of the HP E1415 Algorithmic Loop Controller 56
Operational OVErVIBWttt e e e e 56
ProgrammingModel 57
Executingthe ProgrammingModel 58
Power-on and *RST Default Settings 59
Setting up Analog Input and Output Channels 62
Configuring Programmable Analog SCP Parameters 62
Linking Input ChannelstoEU Conversion 64
Linking Output ChannelstoFunctions. 71
Setting up Digital Input and Output Channels. 71
Settingup Digital Inputs 71
Settingup Digital OUtpUtSo i 73
Performing Channel Calibration (Important!). 75
Defining Standard PID Algorithms. o i e 77
ThePre-defined PIDA Algorithm it 77
ThePre-defined PIDB Algorithm 77
DefiningaPID with ALG:DEFINE i 79
Pre-setting PID Variablesand Coefficients. 80
Pre-settingPIDvariables 80
Defining Data Storage. oo it e 8l
Specifying the
DataFormat e 81
Selecting the
FIFOMOde ... e 81
Settingup the Trigger System 82
Armand Trigger SOUICES ... v ittt ettt et ettt ieeeens 82
Programmingthe Trigger Timer inanann. 84
SettingtheTrigger Countert 84
Outputting Trigger Signals e 85
INITiating/Running Algorithms. e 85
Startingthe PID Algorithm 85
TheOperating SEqUENCEttt et 86
Reading Running AlgorithmValues i, 86
Reading Algorithm Variables 87
Reading Algorithm Values From
the GV T 87

Contents

Reading History Mode ValuesFromtheFIFO 88

Modifying Running Algorithm Variables. 20
Updating the Algorithm Variablesand Coefficients................... 90
Enabling and Disabling Algorithms 91
Setting Algorithm Execution Frequencycoovivnvnn... 91

ExampleCommand SEqUENCEottt e 92

A Quick-Start PID Algorithm Example o .. 92

PID Algorithm Tuning e e e e 95

Usingthe Status System 95
Enabling Eventsto be Reported in the StatusByte 98
ReadingtheStatusByte i e 99
ClearingtheEnableRegisters s 100
The Status Byte Group’s Enable Register 100
Reading Status Groups Directly 100

HP E1415 Background Operation 101

Updating the Status System and VXlbus Interrupts 101

Creating and Loading Custom EU Conversion Tables 103

Compensating for System Offsets 106
Special Considerations i e 107

Detecting Open TranSAUCEISo vttt et e et e 108

More ONn AUtO RaNgiNg. . . . o oot 109

Settling CharaCteristiCSo 110
Background 110
Checking for Problems e 110
Fixing the Problem 111

Chapter 4
Creating and Running Custom Algorithms 113

AbOUt This Chapter. e 113

Describing the HP E1415 Closed Loop Controller. 114

What is a Custom Algorithm? 114

Overview of the Algorithm Language it 114
Example Language Usaget 115

The Algorithm Execution Environment 115
The Main Function 115
How Your Algorithms FitIn 116

Accessing the E1415'S RESOUICESo vttt et e e e 117
Accessing I/O Channels 118
Defining and Accessing Global Variables 119
Determining
First Execution (First_1oop) i 119
Initializing Variables e 120
Sending Datatothe CVTand FIFO 120

Contents 5

SettingaVXlbusinterrupt 121

Determining Your Algorithm’sldentity (ALG_NUM) 121
Calling User Defined Functions, 122
OpErating SEUENCE. . . o ot it i et e ettt e e 122
Overall SeqUeNCEt 122
Algorithm Execution Order i 123
Defining Custom Algorithms (ALG:DEF) 125
ALG:DEFINE inthe Programming Sequence 125
ALG:DEFINE’'sThreeDataFormatsccouiiinienn..n. 125
Changing an Algorithm While
S RUNNING ... e e e e e e e 126
A Very SimpleFirst Algorithm 128
Writingthe Algorithm 129
RunningtheAlgorithm 129
Modifying a Standard PID Algorithm. i ... 129
PIDA with digital On-Off Control 129
Algorithm to Algorithm Communication 130
Communication Using Channel Identifiers 130
Communication Using Global Variables 131
Non-Control Algorithms. e e 133
Data Acquisition Algorithm 133
Process Monitoring Algorithm 133
Implementing Setpoint Profiles 134
Chapter 5
Algorithm Language Reference i e 137
Language Reference ... e 137
Standard Reserved Keywordst 138
Special HP E1415 Reserved Keywords ..., 138
Identifiers 138
Special Identifiersfor Channels 139
O Al Or S ..ttt 139
Intrinsic Functionsand Statements i, 140
Program Flow Control e 140
Data TYPES .. 140
Data StrUCtUrES . . . o 141
Bitfield ACCESSo 142
Language Syntax SUMMarYu. ot 143
Program Structureand Syntax ...t 147
DeclaringVariables i 147
AsSigNiNgValUeSo 147
TheOperationsSymbols i 148
Conditional EXECUtioN i 148
CommeNnt LinNeS. 150
Overall Program SIruCtUret e 150

6

Contents

Whereto Qo NEXt i e 151

Chapter 6

HP E1415 Command Referenceottt 153
Using ThisChapter e e 153
Overall Command Index i e 153
Command Fundamentals i 158
Common Command Format, 158
SCPI Command Formatc.iiuiii i 158
LinkingCommandso i 161
C-SCPI Data TYPES .ottt it e e e e 162
SCPI Command Reference. 163
ABO R . 164
AL GOrithm . 165
ALGorithm[:EXPLICiIt]:ARRay ... 166
ALGorithm[:EXPLIcit]:ARRay?t 167
ALGorithm[:EXPLIicit]:DEFine 167
ALGorithm[:EXPLicit]:SCALarco i, 171
ALGorithm[:EXPLICIt]:SCALar? ... 172
ALGorithm[:EXPLIcCit]:SCAN:RATIO ..., 172
ALGorithm[:EXPLIcit]:SCAN:RATIO? ..., 173
ALGorithm[:EXPLICIt]:SIZE? 173
ALGorithm[:EXPLICIt][:STATE] ... 174
ALGorithm[:EXPLICIt][:STATE]? ...t 175
ALGorithm[:EXPLICIt: TIME? e 175
ALGorithm:FUNCtion:DEFIne i, 176
ALGorithm:OUTPuUt:DELay>o 177
ALGorithm:OQUTPuUt:DELay?ot 178
ALGorithm:UPDate[:IMMediate]ccoiiiiiiiiin... 178
ALGorithm:UPDate:CHANNEl 179
ALGorithm:UPDateeWINDOWot 180
ALGOrithm:UPDateWINDOW? e 181
ARM L 182
ARMEIMMeETIAte] . ..o e 183
ARM:ISOURCE ...t e e e 183
ARM :SOURCE? 184
CALIDration 185
CALibration:CONFigureRESistance 186
CALibration:CONFigureVOLTagecoviiiiiiinaann.. 187
CALIbration:SETUpo 188
CALIbration: SETUP? ..ot e e e e e 188
CALibration:STORe 189
CALibration: TARE e e 190
CALibration: TARE:RESeEt e 191
CALibration: TARE? e 192
CALibration:VALUERESIStanceiiiiiiininann. 192
CALibration:VALUeVOLTagecooi i e 193

Contents 7

CALibration:ZERO? 194

DIAGNOSHIC. .« oottt e 195
DIAGnNostic:CALibration:SETup[:MODE]cov... 195
DIAGnNostic:CALibration:SETup[:MODE]?coiou... 196
DIAGnostic:CALibration: TARE[:OTDetect]:MODE 196
DIAGnostic:CAL ibration: TARE[:OTDetect]:MODE? 197
DIAGNOStIC:CHECKSUM? . .. e 197
DIAGnostic:CUSTom:LINear 197
DIAGnostic:CUSTOM:PIECewiset 198
DIAGnostic:CUSTom:REFerence TEMPerature 199
DIAGnostic:FLOOr[:CONFigure]c.cooiiiiiiiinann. 199
DIAGNOStIC:FLOOr:DUMP .. .o 200
DIAGNOSLICIIEEE 200
DIAGNOSLICIIEEE? 201
DIAGnostiC:INTerrupt[:LINe] ... 201
DIAGnostiC:INTerrupt[:LINe]? 201
DIAGNOstiC:OTDetect[:STATE] ... v v 202
DIAGNOstic:OTDetect[:STATE]? .. oo e 202
DIAGNOstic:QUERY:SCPREAD? e 203
DIAGNOSLIC:VERSION? ..o 203

FET CR 2. 204

FORMaL . .o e e e e 206
FORMaL [DAT A] e e 206
FORMat i DAT Al o e e 207

INTTIatE. .t e 209
INITiate[:IMMediate]t 209

IN PUL L 210
INPut:FILTer[:LPASS:FREQuency ..., 210
INPut:FILTer[:LPASS:FREQuency?, 211
INPUt:FILTer[:LPASS|[:STATE] ... e 211
INPUt:FILTer[:LPASS|[:STATE]? ...t 212
INPUL GAIN o e 212
INPUL GAIN? e 213
INPUL L OW 213
INPUL L OW 2 214
INPULIPOLAritY ... e e 214
INPUL:POLArity? ..t e e 215

MEMOTY . o 216
MEMOry:VME:ADDRESSttt 216
MEMOry:VME:ADDRESS?ttt 217
MEMOry:-VME:SIZE 217
MEMOry:-VME:SIZE? . .. 218
MEMOry:VME:STATE .. e 218
MEMOry:VME:STATE? .o e 219

OUT PUL. . oo e e 220
OUTPut:CURRent: AMPLItudet 220

8

Contents

OUTPut:CURRent:AMPLItude? ... 221

OUTPUt:CURRENt[:STATE] . ..ot 222
OUTPUt:CURRENt[:STATE? . ot 222
OQUTPUL:POLArity ...t e e e 223
OUTPUL:POLarity? ..o e e e 223
OUTPUL:SHUNL ... e e 223
OUTPUL:SHUNLE? ..o e e 224
OUTPUL:TTLTIg:SOURCE . ..ot 224
OUTPUL:TTLTrg:SOURCE? ..o 225
OQUTPUL:TTLTrg<n>[:STATE] ...t e e e e 226
OQUTPUL: TTLTrg<n>[:STATE? ...t e e 226
OUTPUL:TYPE . . e e 226
OUT PUL TY PE? . e 227
OUTPut:VOLTage AMPLItude 227
OUTPut:VOLTage AMPLItUde? i e 228
ROUT e ..o 229
ROUTe SEQuenceDEFINE? i 229
ROUTe: SEQUence:POINES? i 230
SAM PPl . . 231
SAMPIE TIM e . 231
SAMPIE TIMEr 2 o 232
[SEN S . . . 233
[SENSe]JCHANNEL:SETTIING ..o ooe e 234
[SENSe]JCHANNEl:SETTIING? ... oo e 234
[SENSe]DATA:CVTable? ... e 235
[SENSe]DATA:CVTableRESett 236
[SENSe]DATAFIFO[:ALL]? oo s 237
[SENSe]DATA:FIFO:COUNL? ... e 238
[SENSe]DATA:FIFO:COUNt:HALF? 238
[SENSe]DATAFIFO:HALF? ... e 238
[SENSe]DATA:FIFO:MODE e 239
[SENSe]DATA:FIFO:MODE? e 240
[SENSe]DATAFIFO:PART? .. 240
[SENSe]DATAFIFO:RESEot e 241
[SENSe]JFREQuency:APERtUre ...t 241
[SENSe]JFREQuency:APERtUre? 242
[SENSe:]JFUNCLtion:CONDItioNnoouii e 242
[SENSeJFUNCHION:CUSTOMot 243
[SENSe:]FUNCtion:CUSTom:REFerence.ccvvun... 244
[SENSe:]FUNCtion:CUSTom:TCouple.. ... 245
[SENSe]JFUNCLIoN:FREQUENCYt 246
[SENSe JFUNCtion:RESIStance e 246
[SENSe:]JFUNCtion:STRain:FBENdIing 248
[SENSe:]FUNCtion:STRain:FBPoissonccovu... 248
[SENSe:]JFUNCtion:STRain:FPOIssONoviiiiiiiiinenn.. 248
[SENSe:]JFUNCtion:STRain:HBENding 248
[SENSe:]JFUNCtion:STRain:HPOISSONcoiiiiien.. 248

Contents 9

[SENSe:]FUNCtion:STRain[:QUARter], 248

[SENSe:]JFUNCtion:TEMPeraturet 249
[SENSe]FUNCtion:TOTalize 251
[SENSe:]FUNCtion:VOLTage[:DC] ... 251
[SENSe]REFerencet e 252
[SENSe]REFerenceeCHANNElS 254
[SENSe]REFerence TEMPerature ..., 254
[SENSe]STRain:EXCitation 255
[SENSe]STRain:EXCitation? ..., 256
[SENSe]STRaiN:GFACIONt 256
[SENSe]STRaIiN:GFACIOr? ..ottt e 256
[SENSe]STRaAIN:POISSON oot 257
[SENSe]STRaiN:POISSON?o 257
[SENSe]STRain:UNSTrainedcoiiiiiiiinannnn. 258
[SENSe]STRain:UNSTrained? 258
[SENSe:]TOTalize RESet:MODE 259
[SENSe:]TOTalizee RESet:MODE?o 259
SOUR . .« ottt 261
SOURCEFM [STATE] oot e e e e 261
SOURCEFM ST AT ? . e e e e 262
SOURce: FUNCtion[:SHAPe]:CONDiItioncoiiiniinn... 262
SOURce:FUNCtion[:SHAPe]:PULSe, 262
SOURce:FUNCtion[:SHAPeg]:SQUare........... ..o, 263
SOURCEPULMI[:STATE] ..ot 263
SOURCE PULM ST AT ? . ot 264
SOURCEPULSEIPERIODo e 264
SOURCEPULSEIPERIOO? i e e 264
SOURCEPULSEWIDTh ..o e 265
SOURCEPULSEWIDTR? ot 265
ST AT US. .ottt e e e e 267
TheOperation StatuUS GroUp . ..ottt e 269
STATus:OPERation:CONDItion? 269
STATus.OPERation:ENABIleo 270
STATuUs.OPERation:ENABIE? 271
STATusOPERation[:EVENt]? 271
STATus.OPERation:NTRansitiont 271
STATus OPERation:NTRansition? 272
STATus OPERation:PTRansition 272
STATus OPERation:PTRansition? 273
STATUS PRESEt e 273
TheQuestionableData Groupot 274
STATus.QUEStionable:CONDItion?, 274
STATus.QUEStionableeENABIe 275
STATus.QUEStionable:ENABIE? 275
STATusQUEStionable[:EVENt]? ... 276
STATus.QUEStionableeNTRansition 276
STATus. QUEStionableeNTRansition?, 277
STATus.QUEStionable:PTRansition 277

10

Contents

STATus.QUEStionable:PTRansition?t 278

SY ST M .ot 279
SY STeM: CT Y P . i 279
SYSTEMIERROI ? . . 279
SYSTEM:VERSION? ... 280

TRIGOE ..ot e e e 281
TRIGQEr :COUNL .o e 283
TRIGQEr :COUNLE? o e 283
TRIGger[:IMMediate] ...t e 283
TRIGOE :SOURCE .. it e e e e e e 284
TRIGOE :SOURCE? ..ot e e e e 285
TRIGger:TIMer[:PERIOd]coiiii e 285
TRIGger:TIMer[:PERIOA]?o 286

|[EEE-488.2 Common Command Reference 287
AL 2 287
O S o 288
DM C o 288
EM C 288
EM G 288
FESE o 288
B SR ? o 289
B R o 289
HOM C T 289
DN 2 289
M G 290
FOPC 290
P 290
M C 290
FRM C L 291
RS T o 291
O RE oo 292
O RE ? it e 292
S 1 1 = 272 292
T R G oo 292
S 5 1 2 293
N Al 296

Command Quick Reference. e e 297

Appendix A

SPECITICALIONSo 305
Appendix B

Error MESSagES oot 335
Appendix C

GlOSSaNY vt 343

Contents 11

Appendix D

PID Algorithm Listingst e e e 347
PIDA LiSting. . oo ittt e e 347
PIDB LisSting. .o vi i et e e e e e 349
PIDC LisSting. . oo ittt e e e 355

Appendix E

Wiring and Noise Reduction Methods it 361
Separating Digital and Analog SCPSignals.. 361
Recommended Wiring and Noise Reduction Techniques 362

Wiring Checklisto e 362
HP E1415 Guard CoNNeCtionst 363
Common ModeVoltageLimitscco i 363
When to Make Shield Connections 363
Noise Dueto Inadequate Card Grounding, 363
HP E1415 NOISE REECION.t e 364
Normal ModeNoise (ENM) 364
Common ModeNOISE(ECM) ... ovv it e 364
Keeping Common Mode Noise out of the Amplifier 364
Reducing Common Mode Rgjection Using Tri-Filar Transformers 365
Appendix F

Generating User Defined Functions ... i 367
INtrodUCtioNn e 367
HaversineExample.. e e 368
LimitationSo 370
Program ListingsS..ot 371

Appendix G

Example Program Listingscoiiiit i e e 389
£ o T o o 389
fille @O, CS. . ot e 396
S .CS & . vttt it e e 403
I SINB CS .ot 411

INAEX . 423
12 Contents

HEWLETT-PACKARD WARRANTY STATEMENT
HP PRODUCT: HP E1415A DURATION OF WARRANTY: 3years

1. HP warrants HP hardware, accessories and supplies against defects in materials and workmanship for the period specified above. If
HP receives notice of such defects during the warranty period, HP will, at its option, either repair or replace products which prove to be
defective. Replacement products may be either new or like-new.

2. HP warrants that HP software will not fail to execute its programming instructions, for the period specified above, due to defectsin
material and workmanship when properly installed and used. If HP receives notice of such defects during the warranty period, HP will
replace software media which does not execute its programming instructions due to such defects.

3. HP does not warrant that the operation of HP products will be interrupted or error free. If HPisunable, within areasonabletime, to
repair or replace any product to a condition as warranted, customer will be entitled to arefund of the purchase price upon prompt return
of the product.

4. HP products may contain remanufactured parts equivalent to new in performance or may have been subject to incidental use.

5. The warranty period begins on the date of delivery or on the date of installation if installed by HP. If customer schedules or delaysHP
installation more than 30 days after delivery, warranty begins on the 31st day from delivery.

6. Warranty does not apply to defectsresulting from (&) improper or inadequate maintenance or calibration, (b) software, interfacing, parts
or supplies not supplied by HP, (c) unauthorized modification or misuse, (d) operation outside of the published environmental
specifications for the product, or (€) improper site preparation or maintenance.

7. TOTHE EXTENT ALLOWED BY LOCAL LAW, THE ABOVE WARRANTIES ARE EXCLUSIVE AND NO OTHER
WARRANTY OR CONDITION, WHETHER WRITTEN OR ORAL, ISEXPRESSED OR IMPLIED AND HP SPECIFICALLY
DISCLAIMS ANY IMPLIED WARRANTY OR CONDITIONS OF MERCHANTABILITY, SATISFACTORY QUALITY, AND
FITNESS FOR A PARTICULAR PURPOSE.

8. HP will beliable for damage to tangible property per incident up to the greater of $300,000 or the actual amount paid for the product
that is the subject of the claim, and for damages for bodily injury or death, to the extent that all such damages are determined by a court
of competent jurisdiction to have been directly caused by a defective HP product.

9. TO THE EXTENT ALLOWED BY LOCAL LAW, THE REMEDIES IN THIS WARRANTY STATEMENT ARE CUSTOMER’S
SOLE AND EXLUSIVE REMEDIES. EXCEPT AS INDICATED ABOVE, IN NO EVENT WILL HP OR ITS SUPPLIERS BE
LIABLE FOR LOSS OF DATA OR FOR DIRECT, SPECIAL, INCIDENTAL, CONSEQUENTIAL (INCLUDING LOST PROFIT OR
DATA), OR OTHER DAMAGE, WHETHER BASED IN CONTRACT, TORT, OR OTHERWISE.

FOR CONSUMER TRANSACTIONS IN AUSTRALIA AND NEW ZEALAND: THE WARRANTY TERMS CONTAINED IN THIS
STATEMENT, EXCEPT TO THE EXTENT LAWFULLY PERMITTED, DO NOT EXCLUDE, RESTRICT OR MODIFY AND ARE
IN ADDITION TO THE MANDATORY STATUTORY RIGHTS APPLICABLE TO THE SALE OF THIS PRODUCT TO YOU.

U.S. Government Restricted Rights

The Software and Documentation have been developed entirely at private expense. They are delivered and licensed as "commercial
computer software" as defined in DFARS 252.227- 7013 (Oct 1988), DFARS 252.211-7015 (May 1991) or DFARS 252.227-7014 (Jun
1995), as a "commercial item" as defined in FAR 2.101(a), or as "Restricted computer software" as defined in FAR 52.227-19 (Jun
1987)(or any equivalent agency regulation or contract clause), whichever is applicable. You have only those rights pwitied for
Software and Documentation by the applicable FAR or DFARS clause or the HP standard software agreement for the product involved

Trademark Information

Microsoft® and MS-DOS® are U.S. registered trademarks of Microsoft Corporation.

IBM® and PC-DOS® are U.S. registered trademarks of International Business Machines Corporation
DEC®, VT100®, and VT220® are registered trademarks of Digital Equipment Corporation

WYSE® is a registered trademark of Wyse Technology

WY-30™ is a trademark of Wyse Technology

Macintosh® is a registered trademark of Apple Computer Inc.

() ity

HP E1415A Algorithmic CLosed Loop Controller User's Manual
Edition 2
Copyright © 1998 Hewlett-Packard Company. All Rights Reserved.

13

Documentation History

All Editions and Updates of this manual and their creation date are listed below. The first Edition of the manual is Etigiédition

number increments by 1 whenever the manual is revised. Updates, which are issued between Editions, contain replacement pages to
correct or add additional information to the current Edition of the manual. Whenever a new Edition is created, it widlcohthm

Update information for the previous Edition. Each new Edition or Update also includes a revised copy of this documentatjpageist

Edition 1 (E1415-90001).ot i i e March 1996
Edition 2 (E1415-90002).ottt e August 1996

Safety Symbols

Instruction manual symbol affixed to :
product. Indicatesthat the user must refer to Alternating current (AC)
the manual for specific WARNING or

CAUTION information to avoid personal
injury or damage to the product.

<

— Direct current (DC).

Indicates hazardous voltages.

>

Indicatesthe field wiring terminal that must
| be connected to earth ground before

—— operating the equipment—protects against Calls attention to a procedure, practice, or

- electrical shock in case of fault. WARNING 5hdition that could cause bodily injury or
death.
. . Calls attention to a procedure, practice, or
l I Frame or chassis ground terminal— CAUTION ¢ondition that could possibly cause damage to
or
WARNINGS

The following general safety precautions must be observed during all phases of operation, service, and repair of tHtaiproeltat.
comply with these precautions or with specific warnings elsewhere in this manual violates safety standards of designrenandfactu
intended use of the product. Hewlett-Packard Company assumes no liability for the customer's failure to comply with thesentequi

Ground the equipment: For Safety Class 1 equipment (equipment having a protective earth terminal), an uninterruptible safety earth
ground must be provided from the mains power source to the product input wiring terminals or supplied power cable.

DO NOT operate the product in an explosive atmosphere or in the presence of flammable gases or fumes.

For continued protection against fire, replace the line fuse(s) only with fuse(s) of the same voltage and current rgggndaddN®O T
use repaired fuses or short-circuited fuse holders.

Keep away from livecircuits: Operating personnel must not remove equipment covers or shields. Procedures involving the removal of
covers or shields are for use by service-trained personnel only. Under certain conditions, dangerous voltages may akisheven wi
equipment switched off. To avoid dangerous electrical shock, DO NOT perform procedures involving cover or shield remoyatiunless
are qualified to do so.

DO NOT operate damaged equipment: Whenever it is possible that the safety protection features built into this product have been
impaired, either through physical damage, excessive moisture, or any other reason, REMOVE POWER and do not use thel product unti
safe operation can be verified by service-trained personnel. If necessary, return the product to a Hewlett-Packard Bates@ffic&Se

for service and repair to ensure that safety features are maintained.

DO NOT serviceor adjust alone: Do not attempt internal service or adjustment unless another person, capable of rendering first aid and
resuscitation, is present.

DO NOT substitute partsor modify equipment: Because of the danger of introducing additional hazards, do not install substitute parts
or perform any unauthorized modification to the product. Return the product to a Hewlett-Packard Sales and Service €ffice for s
and repair to ensure that safety features are maintained.

Operating Location: Sheltered location where air temperature and humidity are controlled within this product’s specifidatiens a
product is protected against direct exposure to climatic conditions such as direct sunlight, wind, rain, snow, sleet,aaticSpeay
or splash, hoarfrost or dew. (Typically, indoor.) Pollution environment for which this product may be operated is |IEC 64 dajlee
2.

CLEANING INFORMATION

The instrument should only be cleaned by wiping it with a soft damp claoth.

14

Declaration of Conformity
according to ISO/IEC Guide 22 and EN 45014

Manufacturer’s Name: Hewlett-Packard Company
Loveland Manufacturing Center

Manufacturer’s Address: 815 14th Street SW.
Loveland, Colorado 80537

declares, that the product:

Product Name: Algorithmic CLosed Loop Controller
Model Number: HP E1415A
Product Options: All

conforms to the following Product Specifications:

Safety: IEC 1010-1 (1990) Incl. Amend 1 (1992)/EN61010-1 (1993)
CSA C22.2 #1010.1 (1992)
UL 3111-1 (1994)

EMC: CISPR 11:1990/EN55011 (1991): Groupl Class A
|EC 801-2:1991/EN50082-1 (1992): 4kVCD, 8kVAD
|EC 801-3:1984/EN50082-1 (1992): 3V/m
|EC 801-4:1988/EN50082-1 (1992): 1kV Power Line

5kV Signal Lines

Supplementary I nfor mation: The product herewith complieswith the requirements of the Low Voltage Directive
73/23/EEC and the EMC Directive 89/336/EEC (inclusive 93/68/EEC) and carries the "CE" mark accordingly.

Tested in atypical configurationin an HP C-Size V XI mainframe.

QW/&&:,

April, 1996 J|m White, QA M anager

European contact: Y our local Hewlett-Packard Sales and Service Office or Hewlett-Packard GmbH, Depart-
ment HQ-TRE, Herrenberger Stral3e 130, D-71034 Bdblingen, Germany (FAX +49-7031-14-3143)

15

16

_____________cuaongthisline _____ __ ____

Please 1010 ana tape tor marling

Reader Comment Sheet
HP E1415A Algorithmic Closed Loop Controller User’'s Manual
Edition 2

. You can help usimprove our manuals by sharing your comments and suggestions. |n appreciation of your time, we will
| enter you in aquarterly drawing for a Hewlett-Packard Palmtop Personal Computer (U.S. government employees
I are not eligible for the drawing).

Your Name City, State/Province

Company Name Country

Job Title Zip/Postal Code

Address Telephone Number with Area Code

Please list the system controller, operating system, programming language, and plug-in modules you are using.

fold here

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 37 LOVELAND, CO

POSTAGE WILL BE PAID BY ADDRESSEE

HEWLETT-PACKARD COMPANY

Measurement Systems Division
Learning Products Department
P.O. Box 301

Loveland, CO 80539-9984

fold here
Please pencil-in one circle for each statement below: Disagree < » Agree
* The documentation is well organized. O O O O O
* |nstructions are easy to understand. O O O O @)
* The documentation is clearly written. O O O O O
e Examples are clear and useful. O O O O @)
* Illlustrations are clear and helpful. O O O O O
* The documentation meets my overall expectations. O O O O O

Please write any comments or suggestions below—be specific.

Chapter 1
Getting Started

About this Chapter

This chapter will explain hardware configuration before installation in a

V Xlbus mainframe. By attending to each of these configuration items, your
HP E1415 won't have to be removed from its mainframe later. Chapter
contents include:

® Configuringthe HPEL1415 i 19
® Instrument Driverso 27
® About ExamplePrograms. o i 27
® Verifying a Successful Configuration. 27

Configuring the HP E1415

There are severa aspectsto configuring the module beforeinstalling itin a
V Xlbus mainframe. They are:

® Settingthe Logical AddressSwitch 20
® |nstalling Signal Conditioning Plug-ons. 21
® Disabling the Input Protect Feature (optional) 25
® Disabling Flash Memory Access (optional) 25

For most applications you will only need to change the L ogical Address
switch prior to installation. The other settings can be used as delivered.

Switch/Jumper Setting
Logical Address Switch 208
Input Protect Jumper Protected
Flash Memory Protect Jumper PROG

Note Setting the VXIbus Interrupt Level: The HP E1415 uses adefault VX Ibus
interrupt level of 1. The default setting is made at power-on and after a
*RST command. You can change the interrupt level by executing the
DIAGnostic:INTerrupt[:LINe] command in your application program.

Chapter 1 Getting Started 19

Setting the Logical Follow the next figure and ignore any switch numbering printed on the
; Logical Address switch. When installing more than one HP E1415in a
Address Switch single V Xlbus Mainframe, set each instrument to a different Logical

Address.
(... . . D
Setting the Logical Address Switch
0
A
=
<
Default Switch Setting
LOGICAL ADDRESS = 208
2~
=)
Q
)

L y,
20 Getting Started Chapter 1

Installing Signal
Conditioning
Plug-ons

Caution

The following illustrations show the steps you'll use to install Signal
Conditioning Modules. Before you install your SCPs, you should read the
"Separating Digital and Analog SCP Signals' in Appendix E page 361.

Use approved Static Discharge Safe handling procedures
anytime you have the covers removed from the HP E1415 or are
handling SCPs.

-
Installing SCPs: Step 1, Removing the Cover E1415

Remove the SCP || @)
Retaining Screws

Remove 2 screws (#10 Torx);
lift front and slide out tabs

E1520 REMVLEFT

Chapter 1

Getting Started 21

-
Installing SCPs: Step 2, Mounting an SCP

CAUTION

Use approved Static
Discharge handling
procedures when handling
the HP E1413 Scanning
A/D Module and the SCPs.

E1520 INSLSCP

®

Align the SCP
Connectors with the
Module Connectors

and then Push in

Tighten the SCP
Retaining Screws

22 Getting Started

Chapter 1

E1520 INSTLEFT

-
Installing SCPs: Step 3, Reinstalling the Cover E1415

®

Tighten
2 Screws

Line up the 3 Tabs
with the 3 Slots;
then lower cover
onto the Module

)

Chapter 1

Getting Started

23

-
Installing SCPs:

Terminal Module
(Connect to A/D
Module Later)

Step 4, Labeling

Peel off Label from
Card and Stick on
the Terminal
Module to be
Connected to the
A/D Module

Peel off correct
Label from Card and
Stick on the
appropriate place on

the Cover

SNOILONYLSNI

Stick-on Label furnished with the SCP
(HP part number: E15xx-84304)

24

Getting Started

Chapter 1

Disabling the Disabling the Input Protect feature voids the HP E1415's warranty. The Input

In P ut Protect Protect feature allows the HP E1415 to open all channd input relaysif any input's
voltage exceeds £19 volts (x6 volts for digital 1/O SCPs). This feature will help to

Feature protect the card's Signal Conditioning Plug-ons, input multiplexer, ranging
(O pti on a|) amplifier, and A/D from destructive voltage levels. The level that trips the

protection function has been set to provide a high probability of protection. The
voltage level that is certain to cause damage is somewhat higher. If in your
application theimportance of completing a measurement run outweighsthe
added risk of damageto your HP E1415, you may choose to disable the | nput
Protect feature.

Voids Waranty! Disabling the Input Protection Feature voids the HP E1415's warranty.

Todisablethe Input Protection feature, locate and cut IM2202. Makeasinglecutin
the jumper and bend the adjacent ends apart. See following illustration for location
of IM2202.

Disabling The Flash Memory Protect Jumper (JM2201) is shipped in the “PROG” position.
We recommend that you leave the jumper in this position so that all of the
Flash Memory calibration commands can function. Changing the jumper to the protect position
Access willmean you won't be able to execute:

(optional) * The SCP! calibration command CAL:STORE ADC | TARE
® The register-based calibration commands STORECAL, and STORETAR
® Any application that installs firmware-updates or makes any other
maodification to Flash Memory through the A24 window.

With the jumper in the “PROG” position, you can completely calibrate one or more
HP E1415s without removing them from the application system. An HP E1415
calibrated in its working environment will in general be better calibrated than if it
were calibrated separate from its application system.

The multimeter you use during the periodic calibration cycle should be considered
your calibration transfer standard. Have your Calibration Organization control
unauthorized access to its calibration constants. Sd#¢Rit415 Service Manual

for complete information on HP E1415 periodic calibration.

If you must limit access to the HP E1415's calibration constants, you can place
JM2201 in the protected position and cover the shield retaining screws with
calibration stickers. See following illustration for location of IM2201.

Chapter 1 Getting Started 25

' - . \
Accessing and Locating JM2201 and JM2202 E1415
// N\
Flash Memory Protect Jumper
Default = PROG
(recommended) E
@ 1 Locate
K@) 2 Cut
K 3 Bend
Input Protect Jumper
Warning: Cutting this Jumper
L Voids Your Warranty! y
26 Getting Started Chapter 1

Instrument Drivers

If you will be using the HP E1415 with C-SCPI, the driver is supplied as an option
to the C-SCPI product. Follow the C-SCPI documentation for use.

The HP E1405B/E1406, down-loadable driver is supplied with your HP E1415. See
the manual for your HP Command Module/Mainframe for down-loading
procedures.

About Example Programs

Examples on Disc All example programs mentioned by file name in this manual are available on the
HP E1415 C-SCPI driver media or the "Examples disc" supplied with your
HP E1415.

Example Where programming concepts are discussed in this manual, the commands to send
Command tothe HP E1415 are shown in the form of command sequences. These are not
Sequences example programs because they are not writtenin any computer language. They are
meant to show the HP E1415 SCPI commands in the sequence they should be sent.
Where necessary these sequences include comments to describe program flow and
control such asloop - end loop, and if - end if. See the code sequence on page 92 for
an example.

Typical C-SCPI The Verify program (file name verif.cs) is printed below to show atypical C-SCPI
Example program program for the HP E1415.

Verifying a Successful Configuration

An example C-SCPI (compiled-SCPI) program source is shown on the following
pages. Thisprogramisincluded with your C-SCPI driver tape and/or the supplied
examplesdisc (file name verif.cs). The program usesthe*IDN? query command to
verify theHPE1415 isoperational and responding to commands. The program also
has an error checking function (check_error()). It isimportant to include an
instrument error checking routine in your programs, particularly your first trial
programs so you get instant feedback while you are learning about the HP E1415.
After you run the C-SCPI preprocessor and then compile and load this program,
type verif to run the example.

/* verif.cs
1.) Prints the HP E1415A Modul e’ s identification, manufacturer,
and revi si on nunber

2.) Prints the Signal Conditioning Plug-ons (SCPs) identification
(if any) at each of the SCP positions.
*/

#i ncl ude <stdio. h>
#i ncl ude <cscpi . h>

/* Defines nmodul e’s |ogical address */

Chapter 1 Getting Started 27

#define LADD "208"

/* Declares nmodul e as a regi ster device */
| NST_DECL(el415, "E1415A', REd STER);

/* Prototypes of functions declared later */

voidrst _clr(void);
voi di d_scps(void);
i nt 32check_error(char *);

/**/
void main() /* Main function */

{
charread_i d[80];

/* Clear screen and announce program */
printf("\033H 033J\n\n Installation Verification Programin\n");
printf("\n\n Pl ease Wait...");

/* Start the register-based operating systemfor the nodule */
| NST_STARTUP() ;

/* Enabl e conmuni cations to the nodul e; check if successful */
| NST_OPEN(el415, "vxi," LADD);
if (!'eldls)

{
printf ("I NST_OPEN failed (ladd = 9%).Failure code is: %l\n",
LADD, cscpi _open_error);
exit(1);
}

/* Read and print the nodule' s identification */
I NST_QUERY(el1415, "*idn?", "", read_id);
printf("\n\nlnstrument ID: %\n\n", read_id);

rst_clr();/* Function resets the nodule */

id_scps();/* Function checks for installed SCPs */

exit(0);
}

/**/

voidrst_clr() /* Reset the AAD nodule to its power-on state */

{

i nt 16opc_wai t;

/* Reset the nodule and wait until it resets */
I NST_QUERY(el415, "*RST;*OPC?", "", &opc_wait);

/* Check for nodul e generated errors; exit if errors read */
if (check_error("rst_clr"))

28

Getting Started Chapter 1

exit(1);
}

/***/

voi di d_scps() /* Check ID of all installed SCPs */

i nt 16scp_addr;
charscp_i d[100] ;

/* Get SCP identifications of all SCPs */

printf("\nSCP Identifications:\n\n");

for (scp_addr = 100; scp_addr <= 156; scp_addr += 8)

{
I NST_QUERY(el1415, "SYST:CTYP? (@d)", "%", scp_addr, scp_id);
printf("IDfor SCP % is %s\n", (scp_addr - 100) / 8, scp_id);

}

}

/**************************************~k~k********************************/

i nt 32check_error(char *nmessage) /* Check for nodul e generated errors */

{

i ntl16error;
charerr_out[256];

/* Check for any errors */

I NST_QUERY(el1415, "SYST: ERR?", "", &error, err_out);
/* |If error is found, print out the error(s) */
if (error)
{
whi |l e(error)
{
printf("Error %,% (in function %)\n", error, err_out, nessage);
I NST_QUERY(el1415, "SYST: ERR?", "", &error, err_out);
}
return 1,
}
return O;

Chapter 1 Getting Started 29

Notes:

30 Getting Started Chapter 1

Chapter 2
Field Wiring

About This Chapter

This chapter shows how to plan and connect field wiring to the HP E1415's
Terminal Module. The chapter explains proper connection of analog signal's
to the HP E1415, both two-wire voltage type and four-wire resistance type
measurements. Connections for other measurement types (e.g., strain using
the Bridge Completion SCPs) refer to specific SCP manual in the "SCP
Manuals' section. Chapter contents include:

® Planning Your WiringLayout.oo.... 31
® Terminal Modules.t 35
® Reference Temperature Sensing withthe HPE1415 37
® Preferred Measurement Connectionscooon... 39
® Connecting the On-board Thermistor. 42
® Wiring and Attaching the Terminal Module. 43
® Attaching/Removing the HP E1415 Terminal Module. 45
® Adding Componentsto the Terminal Module. 47
® Terminal ModuleWiringMap, 48
® Terminal Module Options. 49
® Faceplate Connector Pin-Signal Lists. 53

Planning Your Wiring Layout

SCP Positions and
Channel Numbers

The first point to understand is that the HP E1415 makes no assumptions
about the rel ationship between Signal Conditioning Plug-on (SCP) function
and the position in the HP E1415 that it can occupy. Y ou can put any type
of SCPinto any SCP position. There are, however, some factorsyou should
consider when planning what mix of SCPs should beinstalledin each of your
HP E1415s. The following discussions will help you understand these
factors.

TheHP E1415 hasafixed relationship between Signal Conditioning Plug-on
positions and the channels they connect to. Each of the eight SCP positions
can connect to eight channels. Figure 2-1 showsthe channel number to SCP
relationship.

Chapter 2

Field Wiring 31

Note
Each channel line
represents both a
Hi and Lo input.

A/D System

0~ 0

Input Multiplexer

SCP

SCP

——L—ch 15

SCP

- r—~ch16

SCP

SCP

F——+——=< Ch 39

SCP

< Ch 40

< Ch 47

SCP

——+——< Ch 48

SCP

Figure 2-1. Channel Numbers at SCP Positions

Terminal Module

32 Field Wiring

Chapter 2

Sense SCPs and someSCPsprovideinput signal conditioning (sense SCPssuch asfiltersand
amplifiers) while others provide stimulus to your measurement circuit
Ou tp ut SCPs (output SCPs such as current sources and strain bridge completion). In
general, channels at output SCP positions are not used for external signal
sensing but are paired with channel s of asense SCP. Two pointsto remember
about mixing output and sense SCPs:

1. Paired SCPs (an output and a sense SCP) may reside in separate
HP E1415s. SCP outputs are adjusted by *CAL ?to be within a
specific limit. The Engineering Unit (EU) conversion used for asense
channel will assume the calibrated value for the output channel.

2. Output SCPswhile providing stimulus to your measurement circuit
reduce the number of external sense channels available to your
HP E1415.

Figure2-2illustratesan exampleof "pairing” output SCP channel swith sense
SCP channels (in this exampl e, four-wire resistance measurements).

sense Hi

Note
Each channel line
represents both a
Hi and Lo input.

sense Lo

output Hi

output Lo

1 1

| |

scp [[

. 3 - -

2 (sense) i :

2 ! i
o Ch 31

' E | Ch3 |

S E----3 ; ;

5 F--—-- SCP . .

g F-————- 4 ' :

= = ===(output) I i

______ | Ch 39 i

| Terminal Module |

Figure 2-2. Pairing Output and Sense SCP Channels

Chapter 2 Field Wiring 33

Planning for
Thermocouple
Measurements

Note

Note

Y ou can wire your thermocouples and your thermocouple reference
temperature sensor to any of the HP E1415's channels. When you execute
your scan list, you only have to make sure that the reference temperature
sensor is specified in the channel sequence before any of the associated
thermocoupl e channels.

External wiring and connections to the HP E1415 are made using the
Terminal Module (see Figure 2-3 on page 36).

The isothermal reference temperature measurement made by an HP E1415
applies only to thermocouple measurements made by that instrument. In
systems with multiple HP E1415s, each instrument must make its own
reference measurements. The reference measurement made by one

HP E1415 can not be used to compensate thermocoupl e measurements
made by another HP E1415.

To make good low-noise measurements you must use shielded wiring from
the device under test to the Terminal Module at the HP E1415. The shield
must be continuous through any wiring panels or isothermal reference
connector blocks and must be grounded at a single point to prevent ground
loops. See "Preferred Measurement Connections' later in this section and
"Wiring and Noise Reduction Methods" in Appendix E page 361.

34 Field Wiring

Chapter 2

Terminal Modules

The SCPs and

Terminal Module

Terminal Module

Layout

The HP E1415 is comprised of an A/D module and a spring clamp type
Terminal Module. The terminals utilize a spring clamp terminal for
connecting solid or stranded wire. Connection is made with asimple push of
athree-pronged insertiontool (HP part number 8710-2127), whichisshipped
with the HP E1415. If the spring clamp terminal module is not desired, a
crimp-and-insert terminal module (Option A3E) and an interface to a rack
mount terminal panel (Option A3F) is available (See “Option A3F” on
page 51.).

The Terminal Module provides the following

® Terminal connectionsto field wiring.

® Strain relief for the wiring bundle.

® Reference junction temperature sensing for thermocouple
measurements.

® Ground to Guard connections for each channel.

The same Terminal is used for all field wiring regardless of which Signal
Conditioning Plug-on (SCP) is used. Each SCP includes a set of labelsto
map that SCP's channels to the Terminal Module's terminal blocks. See
“Installing SCPs: Step 4, Labeling” on page 24.

Figure 2-3 shows the Terminal Module for the HP E1415.

Chapter 2

Field Wiring 35

Sockets for Guard to

Ground Connections
mjm
[1L

mm|l0
mm|00

T HE] (]
A10-8 Sl (7]
é_=lo 2] | =
] AN-3 2-mml O]
O (Ale_ ofE[O] —
(T I | 1 (o i — ' B
(o) -3 SR EEEZE
= .Oo MOII = ,—= = D]
S %_III OI==_% O
— = — (. —
) o B) /
) (o I 1= Tl [C]] ol i el
O = (-5 —EE [T P s = = e Y o =
O & [Tme ol =0 —/——— =l= =
] AN [l [5 T —
O (N~ o-me O — S — HHE B — BB
[[| olE| (O] S = e = = O e =
O W= =3 11 I) I — i = == =
T -z 8'_ (] [e = — =5 B =
N [INo ol [0 —— 5 — B B — B
NILI B B OO0 — S SRS 5
i-c ot e O —
| WO = | —
o= = B 5L
Terminal Block for S 5 =
Input Connections < % o
Jumper to select for oo %
On-board or Remote z =
Temperature Sensing = = =
5 -
2 L] =) 5 o _ B
S0 DT
(] & == =
LTS] o = T BB T B
HTS (| o — E e T e
LT O [ANE=EEMEE: | -cEpEE-
O | im0 ;\ = BE 1E
o) oNOE| [O O
LCAUEN]
HCAL[H B]
Lol B 1
HoHMIE B]
|
E O
(|

Terminal Block with

On-board Thermistor
for Temperature Sensing

Remote Temperature Sensing,
Trigger, and other Connections

Figure 2-3. HP E1415 Terminal Module

36 Field Wiring

Chapter 2

Reference Temperature Sensing with the HP E1415

The Terminal Module provides an on-board thermistor for sensing
isothermal reference temperature of the terminal blocks. Also provided isa
jumper set (J1in Figure2-5) to routethe HP E1415's on-board current source
to athermistor or RTD on aremote isothermal reference block. Figure 2-4
and Figure 2-5 show connections for both local and remote sensing. See
“Connecting the On-board Thermistor” on page 42. for location of J1.

E1415 Terminal Module i Field Wiring

T
d

P P DD

r
=

ON
REM _BOARD
O

o/
| HTS
On-Board

Current Source I

S) A} O | LTS
J1
Any Sense Hnn
Channel

Lnn

Figure 2-4. On-Board Thermistor Connection

E1415 Terminal Module Field Wiring

O

ON LT
REM BOARD H
O S
] :
On-Board :
Current Source I
J J1 §
Any Sense Hnn @
Channel @

Figure 2-5. Remote Thermistor or RTD Connections

Chapter 2 Field Wiring 37

Terminal Module
Considerations for TC

Measurements

Theisothermal characteristicsof the HP E1415 Terminal Modulearecrucia
for good TC readings and can be affected by any of the following factors:

1
2.

The clear plastic cover must be on the Terminal Module.

The thin white mylar thermal barrier must be inserted over the
Terminal Module connector (HP E1415 only). This prevents airflow
from the HP E1415 A/D Module into the Terminal Module.

The Terminal Module must also be in afairly stable temperature
environment, and it is best to minimize the temperature gradient
between the HP E1415 module and the Terminal Module.

The VXI mainframe cooling fan filters must be clean and there
should be as much clear space in front of the fan intakes as possible.
Recirculating warm air inside a closed rack cabinet can cause a
problem if the Terminal Module is suspended into ambient air that is
significantly warmer or cooler. If the mainframe recessis mounted in
arack with both front and rear doors, closing both doors helps keep
the entire HP E1415 at a uniform temperature. If there is no front
door, try opening the back door.

HP recommends that the cooling fan switch on the back of the of an
HP E1401 Mainframeisin the "High" position. The normal variable
speed cooling fan control can make the internal HP E1415 module
temperature cycle up and down, which affects the amplifiers with
these uV level signals.

38 Field Wiring

Chapter 2

Preferred Measurement Connections

IMPORTANT!

Notes

For any A/D Moduleto scan channelsat high speeds, it must use avery short
sample period (<10usecond for the HP E1415). If significant normal mode
noise is presented to its inputs, that noise will be part of the measurement.
To make quiet, accurate measurements in electrically noisy environments,
use properly connected shielded wiring between the A/D and the device
under test. Figure 2-6 shows recommended connections for powered
transducers, thermocouples, and resistance transducers. (See Appendix E
page 361 for more information on Wiring Techniques).

1

N

Ea

Try to install Analog SCPs relative to Digital 1/0 as shownin
"Separating Digital and Analog Signals' in Appendix .

Use individually shielded, twisted-pair wiring for each channel.
Connect the shield of each wiring pair to the corresponding Guard
(G) terminal on the Terminal Module (see Figure 2-7 for schematic of
Guard to Ground circuitry on the Terminal Modul€).

The Terminal Module is shipped with the Ground-Guard
(GND-GRD) shorting jumper installed for each channel. These may
be left installed or removed (see Figure 2-8 to remove the jumper),
dependent on the following conditions:

a. Grounded Transducer with shield connected to ground at the
transducer: Low frequency ground loops (DC and/or 50/60H2z)
can result if the shield is a'so grounded at the Terminal Module
end. To prevent this, remove the GND-GRD jumper for that
channel (Figure 2-6 A/C).

b. Floating Transducer with shield connected to the transducer
at the source: In this case, the best performance will most likely
be achieved by leaving the GND-GRD jumper in place (Figure 2-6
B/D).

In general, the GND-GRD jumper can be left in place unlessitis
necessary to remove to break low frequency (below 1 kHz) ground
loops.

Use good quality foil or braided shield signal cable.

Route signal leads as far as possible from the sources of greatest
noise.

In general, don't connect Hi or Lo to Guard or Ground at the

HP E1415.

Itisbest if thereisaD.C. path somewhere in the system from Hi or
Lo to Guard/Ground.

The impedance from Hi to Guard/Ground should be the same as from
Lo to Guard/Ground (bal anced).

Since each system is different, don't be afraid to experiment using the
suggestions presented here until you find an acceptable noise level.

Chapter 2

Field Wiring 39

T + power

o Shield
Device | \ Hi
Under Test ! pressure | P —o0
_>— to Lo

v)

Guard
— 1 - power A T—O Remove Jumper to

Example for) “ break Ground Loop
77 /_j; (shield connected to

'Ile?a\.ll\’Ili';ieudcers ground at transducer)
+ power
Device | Shield i
Under Test | pressure P A | —]
>| to Lo
: ' / —
I B Guard
| Leave Jumper
! — power i — in Place
(transducer floating)
1 .
| Shield _
: \ Hi
Device ' L:
(0]
Under Test | o
| v
l—n|7 C Guard
Examp|e for —0 Remove Jumper to
Thermocouples :> break Ground Loop
| (shield connected to
ground at transducer)
Shield
I Hi
g | '——o
Device)
0
Under Test : S
|
I D Guard
| Leave Jumper
I in Place
(transducer floating)
Shield
| Y Hi
\——-o0
Lo
. C
Examp.le for E Guard Jumper may be leftin
Resistive ~a— place, since Current Lo(+)
Transducers is at E1415 GND Potential
Current Hi (-)
O

CurrentLo (+)
0]

Figure 2-6. Preferred Signal Connections

40 Field Wiring Chapter 2

External Connections

Terminal Module SCP

1 KQ !
\/W 7.7 g

GO o

For each
SCP Position

G70

-T—.lpF
i+

GND to GRD Jumper
(removable)

10 KQ

1KQ

VAYAVa /:/ ¢
GND to GRD Jumper
(removable)

l.luF
i

10 KQ

Figure 2-7. GRD/GND Circuitry on Terminal Module

Removing Guard to
Ground on Channel 00

‘uuuuuuuuuuuuuuuuuuuuuuuu

Lé;%@HHHHHHHHHHHHHHHHHHHHHHH

‘UUUUUUUUUUUUUUUUUUUUUUUU
—

MMMMWWMM

\;@M 5] oo||]
D
I = 3

Figure 2-8. Grounding the Guard Terminals

Chapter 2

Field Wiring 41

Connecting the On-board Thermistor

The following figures show how to use the HP E1415 to make temperature
measurements using the on-board Thermistor or aremote reference sensor. The
Thermistor is used for reference junction temperature sensing for thermocouple
measurements. Figure 2-9 shows the configuration for the HP E1415 Terminal

Module. See “Reference Temperature Sensing with the HP E1415” on page 37. for
a schematic diagram of the reference connections.

Under Cover

ON BOARD
Place both J1 jumpers here to
connect current source to
on-board thermistor RT1. Sense
RT1 by connecting any sense
channels to terminals HTS and
J1 J1 LTS.

ON ON
BOARD| © BOARD| o
o REM I o | REM

REMote
Place both J1 jumpers here to
route current source to terminals
HTI and LTI. Connect these
D terminals to remote thermistor or
RTD. Sense with any sense
— channel.

.
]
[
L
A (o
-
]
[
J

SCR7

SCP O

SCP1

SCP 2
SCP5 SCP6

SCP3
SCP 4

S RVA7As,

See Figure 2-10 on page 43 to remove the cover

Figure 2-9. Temperature Sensing for the Terminal Module

42 Field Wiring Chapter 2

Wiring and Attaching the Terminal Module

Figure 2-10 and Figure 2-12 show how to open, wire, and attach theterminal module
to an HP E1415.

(. Y4 N\
@ Remove Clear Cover @ Remove and Retain Wiring Exit Panel
g ﬂ B A. Release Screws
- B. Press Tab Forward N Rv?/ﬂj:\éii: ;;,:2?53
I and Release 2>k

> Tab
_ VAN J
e o N ™)
@ Make Connections @ Route Wiring

Use wire

Special tool HP P/N
8710-2127 (shipped
with Terminal

Size 20-26
AWG

Tighten wraps to
secure wires

- 5Smm
0.2"

Push down on lever,
insert wire into terminal,
and release.

AN

Figure 2-10. Wiring and Connecting the E1415’s Terminal Module

Chapter 2 Field Wiring 43

'y o . N\ (,)
@ Replace Wiring Exit Panel @ Replace Clear Cover
A. Hook in the top cover tabs
onto the fixture@
Cut required Keep wiring exit panel
holes in panels hole as small as
for wire exit possible
OUDUODDWOUDUO
\. VAN J
s] AY4S]] N
@ Install the Terminal Push in the Extraction Levers to Lock the
Module Terminal Module onto the HP E1415
Install Mylar Thermal Barrier =
_on Terminal Module Z
Q
>f %
% Extraction
Levers /’
ﬁ
VQX
<
{\ §
HP E1415
Module
J _ J

Figure 2-11. HP E1415 Terminal Module

44 Field Wiring Chapter 2

Attaching/Removing the HP E1415 Terminal Module

Figure 2-12 shows how to attach the terminal module to the HP E1415 and Figure
2-13 shows how to remove it.

. N\
@ Extend the extraction levers on the
Terminal Module
Install Mylar Thermal Barrier
on Terminal Module
connectors
Extraction Lever—s «
14 //
. 7
& § ¢
3
3 7
Use a small screwdriver :“ ///é/ B
to pry and release the S| /////
two extraction levers ’ g
e Align the Terminal Module
connectors to the HP E1415
__ Extraction Lever — " module connectors)
\

/@ Apply gentle pressure to attach
the Terminal Module to the
HP E1415 Module

i

Extraction
Levers

Push in the extraction levers
to lock the Terminal Module
onto the HP E1415 Module

Figure 2-12. Attaching the HP E1415 Termina

Chapter 2 Field Wiring 45

Release the two extraction

levers and push both levers
out simultaneously

Extraction Lever

\

Use a small screwdriver
to pry and release the
two extraction levers

\¢

Free and remove the Terminal)
Module from the A/D Module

>
v/

Extraction Lever—m,

y g BOYD

@fF——xa
QAR
“\‘ “\"‘ \\\\\\“

o =

Figure 2-13. Removing the HP E1415 Terminal

46 Field Wiring Chapter 2

Adding Components to the Terminal Module

Theback of theterminal module P.C. board provides surface mount pads which you
can use to add serial and parallel components to any channel’s signal path. Figure
2-14 shows additional component locator information (see the schematic and pad
layout information on the back of theteminal moduleP.C. board). Figure 2-15 shows
some usage example schematics.

1
Upper layout also applies here
Ll
HERNRRRA
Lower layout also applies here
L[]
HEER
tmcompnt.cdr
Figure 2-14. Additional Component Location
HI or%;\'c HI HI SH HI
TO USER WIRING 0 onms 52 TO E1413/E1415 TO USER WIRING 10%5 ég} TO E1413/E1415
Lo o?ko T Lo Lo SL ?ﬂr Lo
0 Ohms OWO

S o - 10K Ohms fe) &
/j)7 /j)7 /i:: /iu—

Default Circuit Normal Mode Low-Pass Filter Circuit

HI SH HI

0 Ohms

TO USER WIRING TO E1413/E1415

SWyo 052
o
SWyO 002

" Hd
—OVO—4

LO

8 4-20 mA NOTE: input must not exceed common mode limits (usually
O'u - +-16 Volts unless attenuated with an HP E1513)
A

4 to 20 mA Sense
5V full scale with 250 Ohm (must use 16 Volt range)
4V full scale with 200 Ohm (can use 4 Volt range for better resolution) tmechems.cdr

LO SL
e,
0 Ohms

Figure 2-15. Series & Parallel Component Examples

Chapter 2 Field Wiring 47

Terminal Module Wiring Map

Figure 2-16 shows the Terminal Module map for the HP E1415.

Top ——M >
P nnnnnmnnmn T LT 1O L
— e
H24 H16 HO8 HOO N
[24 L16 L08 L00 —
G24 G16 G08 G00
H25 H17 HO9 HO1 —
[25 L17 L09 L01
G25 G17 G09 GO01
H26 H18 H10 HO2 -
L26 L18 L10 L02 —
G26 G18 G10 G02 —
H27 H19 H11 HO3]
L27 L19 L11 L03]
G27 G19 G11 G03 -
H28 H20 H12 HO4 -
L28 L20 L12 L04 —
. G28 G20 G12 G04
M H29 H21 H13 HO5 —
N L29 L21 L13 L05
= G29 G21 G13 G05 —
= H30 H22 H14 HO6
i L30 L22 L14 L06 =
Il O30 G22 G14 GO06 —
H31 H23 H15 HO7 —
[31 [23 L15 L07 —
G31 G23 G15 GO7 —
GND —
eho M | =——
- GND U ==
T LTS
HTS O
All wiring entering Terminal |'_-|TT'|
Module passes under this ——— VL | L & GND
i i L TRIG
strain relief bar o GCND O
LCAL
s
- HOHM O
i GND ——
GND —
G32 G40 G48 G56 R
L32 L40 L48 L56 |
H32 H40 H48 H56 I
U O 633 Gal G49 iy] f—
L (33 L4l L49 L57 R
= H33 H41 H49 H57 J—
m G34 G42 G50 G58 I
| L34 L42 L50 158 |
R H34 H42 H50 H58
G35 G43 G51 G59
L35 L43 L51 L59
H35 H43 H51 H59 —
ol s | e
L
H36 H44 H52 H60
G37 G45 G53 G61 -
L37 L45 L53 L61 -
H37 H45 H53 H61 =
G38 G46 G54 G62
L38 L46 154 L62
A O H3s H46 H54 H62
G39 G47 G55 G63
L39 L47 L55 L63 —
H39 H47 H55 H63 —
Heavy line mdu_:ates the —) T —
side of the terminal block L DU DU H-- I
that the wire enters M

Figure 2-16. HP E1415 Terminal Module Map

48 Field Wiring Chapter 2

Terminal Module Options

Besidesthe standard Terminal Module with push-in connectors, the The HP E1415
can be ordered with the following two options. One option (Option A3F) allows
connection to an HP E1586 Rack Mount Terminal Panel and the other option (A3E)
alows direct connectionsto the HP E1415 A/D Modul€'s Faceplate using
connectors.

Option A3E Option A3E can be ordered if a crimp-and-insert terminal module is desired. This
allows you to crimp connectors onto wires which are then inserted directly into the
E1415's Faceplate connector. Refer to the pin-out diagram in Figure 2-19 on page
53to makethe connections. The crimp-and-insert connector isshownin Figure 2-17.

Note The pinout numbering on the crimp connector may not agree with the
pinput numbering on the HP E1415's faceplate connector. Use the pin
numbering on the faceplate connector to wire the crimp connector.

Figure 2-17. Crimp-and-Insert Connector

Chapter 2 Field Wiring 49

Terminal Module Thefollowing accessories are necessary for use with crimp-and-insert Option A3E:

Accessories
Single-Conductor and Contact

A crimp-and-insert contact is crimped onto one end of awire. The other end is not
terminated. Order HP 91510A.

Length: 2 meters
N Wire Gauge: 24 AWG

Quantity: 50 each
\ % / Insulation Rating: 105°C maximum
\/ Voltage: 300 V

Shielded-Twisted-Pair and Contacts

A crimp-and-insert contact is crimped onto each conductor at one end of a
shielded-twisted-pair cable. The other end is not terminated. Order HP 91511A.

Length: 2 meters

Wire Gauge: 24 AWG

Outside Diameter: 0.1 inches
Quantity: 25 each

Insulation Rating: 250°C maxim1t
Voltage: 600 V

Jumper Wire and Contacts

A crimp-and-insert contact is crimped onto each end of a single conductor jumper
wire. This jumper istypically used to tie two pins together in asingle
crimp-and-insert connector. Order HP 91512A.

Crimp-and-Insert Contacts

These contacts may be crimped onto a conductor and then inserted into a

crimp-and-insert connector. Thecrimp tool kitisrequired to crimp the contactsonto
aconductor and remove the contact from the connector. Order HP 91515A.

Wire Gauge Range: 20 - 24 AWG

Quantity: 250 each
%@ Plating: Gold Plated Contact
Maximum Current: 2A at 70°C

50 Field Wiring Chapter 2

Crimp-and-Insert Tools

The hand crimp tool (part number HP 91518A) isused for crimping contacts onto a
conductor. The pinextractor tool (part number HP 91519A) isrequired for removing
contacts from the crimp-and-insert connector. These products are not included
with Option A3E or with theterminal option accessorieslisted earlier.

Extra Crimp-and-Insert Connectors

The crimp-and-insert connector is normally supplied with Option A3E. Contact
Hewlett-Packard Company if additional connectors are needed. Order HP 91484B.

Option A3F Option A3F alows an HP E1415 to be connected to an HP E1586 Rack Mount
Terminal Panel. The option provides 4 SCSI plugs on a Terminal Module to make
connections to the Rack Mount Terminal Panel using 4 separately ordered SCSI
cables. Option A3F Isshown in Figure 2-18.

%A

)
&

)
&

X

X

¥

Figure 2-18. Option A3F

Chapter 2 Field Wiring 51

Rack Mount
Terminal Panel
Accessories

There are two different cables available for connecting the HP E1586 Rack Mount
Terminal Panel to the HP E1415 Option A3F. In both cases, four cablesare required
if all 64-channels are needed. These cables do not come with the HP E1415 Option
A3F and must be ordered separately.

Standard Cable

Thiscable (HPE1588A) isa16-channel twisted pair cablewith an outer shield. This
cable is suitable for relatively short cable runs.

Custom Length Cable

Thiscable(HPZ2220A Option 050) isavailablein custom lengths. Itisa16-channel
twisted pair cable with each twisted pair individually shielded to provide better
quality shielding for longer cable runs.

HF Common Mode Filters

Optional High Frequency Common Mode Filters are on the HP E1586 Rack Mount
Terminal Panel’sinput channels (HP E1586 Option 001, RF Filters). They filter out
AC common mode signals present in the cable that connects between the terminal
panel and the device under test. Thefiltersare useful for filtering out small common
mode signals below 5 Vp-p. To order these filters, order HP E1586 Option 00L.

52 Field Wiring

Chapter 2

Faceplate Connector Pin-Signal Lists

Figure 2-19 shows the Faceplate Connector Pin Signal List for the HP E1415.

Count Count
From From
Top Bottom
1 GND HOO LOO 32
2 GND HO1 LO1 31
3 GND H02 LO02 30
4 GND H03 L03 29
5 GND HO04 LO4 28
0 6 GO HO5 LO5 27
5 7 G1 HO6 LO06 26
) 8 HO8 HO7 LO7 25
s8s m 9 L08 HO9 LO9 24
ess o 10 H11 H10 L10 23
Ep — 11 L1 H12 L12 22
®aa o 12 H14 H13 L13 21
gse % 13 L14 H15 L15 20
seall A 14 H17 H16 L16 19
=esll g 15 L17 H18 L18 18
| | Je== > 16 H20 H19 L19 17
ceell = 17 L20 H21 L21 16
" uw A 18 H23 H22 L22 15
I ,C_) 19 123 H24 L24 14
wee - 20 G2 H25 L25 13
e uw m 21 H27 H26 L26 12
seal A 22 127 H28 L28 11
see 23 H30 H29 L29 10
T 24 L30 H31 L31 9
“uw 25 G3 G3 G3 8
s e 26 G3 G3 G3 7
meo 27 GND GND GND 6
. um 28 GND HOHM LOHM 5
waa 29 GND HCAL LCAL 4
ses 30 GND GND GND 3
e 31 GND H_I LI 2
s aw 32 GND GND GND 1
- H 1 HCAL HCAL 6
v L 2 LCAL LCAL 5
>_ G CAL 3 GND GND 4
! E BUS 4 HOHM HOHM 3
C & 5 LOHM LOHM 2
6 GND GND 1
e 1 GND GND GND 32
Epp 2 GND TRG GND 31
wee 3 GND GND GND 30
e 4 TST-A SYSF GND 29
s e 5 GND GND GND 28
e 6 G4 G4 G4 27
wee 7 G4 G4 G4 26
e 8 G4 G4 G4 25
«uw 9 133 H32 L32 24
s 10 H33 H34 L34 23
ee 1 136 H35 L35 22
e 12 H36 H37 L37 21
aaa 13 G5 H38 L38 20
Bes 14 L40 H39 L39 19
— [z 15 H40 H41 141 18
w e e 16 143 H42 142 17
B 17 H43 H44 L44 16
=as 18 L46 H45 L45 15
e 19 H46 H47 L47 14
e 20 149 H48 148 13
wuos 21 H49 H50 L50 12
e 22 L52 H51 L51 11
waa 23 H52 H53 L53 10
v s 24 L55 H54 L54 9
25 H55 H56 L56 8
| | E1415A 26 G6 H57 57 7
27 G7 H58 L58 6
=5 28 GND H59 L59 5
= 29 GND H60 L60 4
bus 30 GND H61 L61 3
A N 31 GND H62 L62 2
32 GND H63 L63 1
J MU

Figure 2-19. HP E1415A Faceplate Connector Pin Signals

Chapter 2 Field Wiring 53

Notes:

54 Field Wiring Chapter 2

Chapter 3

Programming the HP E1415 for PID Control

About This Chapter

The focus in this chapter is to show the HP E1415’s programming model.
The programming model is basically the sequence of SCPI commands your
application program will send to the HP E1415 to configure it to execute the
defined PID algorithms. This programming model is virtually the same for
the pre-defined PID algorithms and user-defined custom algorithms. This
chapter contains:

e Overview of the HP E1415 Algorithmic Loop Controller 56
Programming Model 57
e Executing the Programming Model 58
Programming Overview Diagram. 61
-- Setting up Analog Input and Output Channels. 62
Configuring Programmable Analog SCP Parameters. 62
Linking Input Channels to EU Conversion. 64
Linking Output Channels to Functions. 71
-- Setting up Digital Input and Output Channels 71
Settingup Digital Inputs 71
Setting up Digital Outputs. 73
-- Performing Channel Calibration (Important!) 75
-- Defining Standard PID Algorithms. 77
The Pre-defined PIDA Algorithm. 77
The Pre-defined PIDB Algorithm. 77
Pre-setting PID variables. 80
-- Defining Data Storage. i 81
Specifyingthe Data Format 81
Selectingthe FIFOMode 81
-- Setting up the Trigger System. 82
Arm and Trigger SOUrCes, 82
Programming the Trigger Timer. 84
-- INITiating/Running Algorithms 85
The Operating SEqUENCE oot e 86
-- Reading Running Algorithm Values 86
Reading Algorithm Values Fromthe CVT 87
Reading Algorithm Variables 87
Reading History Mode Values Fromthe FIFO............ 88
-- Modifying Running Algorithm Variables. 90
Updating the Algorithm Variables and Coefficients. 90
Enabling and Disabling Algorithms 91
Setting Algorithm Execution Frequency. 91
* A Quick-Start PID Algorithm Example 92
e PID Algorithm Tuning e 95
e Usingthe Status System i 95
« HP E1415 Background Operation. 101
e Updating the Status System and VXlbus Interrupts 101

Chapter 3

Programming the HP E1415 for PID Control 55

e Creating and Loading Custom EU Conversion Tables. 103
e Compensating for System Offsets. 106
e Detecting Open Transducers., 108
e More On Auto Ranging.o 109
e Settling Characteristics 110

Overview of the HP E1415 Algorithmic Loop Controller

Operational
Overview

Voltage
Temperature
Resistance
Strain

Sample/Hold

Digital State
Frequency

Totalize

Algorithmic?

sdDS Induj Bojeuy |

sinduj 4Os [enbig |

Jaxa|diynpy Bojeuy

The first part of this chapter will provide an overview of the HP E1415’s
operating model, and programming. This will help you understand the
affects of programming commands you will see in later examples and
detailed discussions.

This section describes how the HP E1415 gathers input data, executes an
algorithm and outputs control signals. Figure 3-1 shows a simplified
functional block diagram.

Trigger Timer
Digital Signal Processor (DSP) 1
Z | Voltage
—D| Trigger System Output > %
System OO
u g
c
[
»| Input Buffer Output Buffer (@] c
(1100-1163) | | (0100-0163) & | Current
/ AN
A24 Program/Data Memory cg Static States
tatic float profile[100 I; "8
Global Data fniilnc() oat profile[100] 2 Pulse per Trigger
Main Program if (State_1) alg1(); g Pulse Width Mod.
* c
g | Frequency Mod.
w

}

i g1
C Algorithm Code ? 91() A16 /\
static float in_val, j; < Command |¢
Register
in_val = 1100 - 5.3;
=i+
0108 =in_val * profile[j]; c " <
writecvt(in_val, 10); urren X
writefifo(0101); . ~——_| Value ol E
} \\» Table %
X \ (CVT)
FIFO <
Buffer V

Figure 3-1. Simplified Functional Block Diagram

The HP E1415 is an algorithmic process loop controller. It can provide as
many as 32 single-input/single-output control loops in a single VXlbus
module. The term algorithmic indicates that the HP E1415 is a digital loop
controller. An internal Digital Signal Processor (DSP) executes program

56

Programming the HP E1415 for PID Control

Chapter 3

code that implements a control algorithm. Y ou define the algorithm for a

control loop by selecting one of the HP E1415’s two standard PID
algorithms, or by downloading a custom algorithm you have created in the
HP E1415's Algorithm Programming Language (a 'C’ like language). Once
defined, the control loop algorithm becomes a subprogram function that is
executed each time the module receives a trigger signal and after all input
signal channels have been scanned.

Process Data In The HP E1415 provides advanced data acquisition capability which
includes on-board signal conditioning and Engineering Unit (EU
conversion. The signal conditioning means accurate signal values from a
wide range of process sensors. The EU conversion means that signal values
measured at process sensors will be returned in standard engineering units
such as volts, Ohms, degrees C, or micro strain. Further, custom EU
conversions can be defined to convert signal values from standard sensors,
to values more closely related to the process variables being measured. For
instance, voltage from a pressure sensor can be converted to PSI. The input
data appear to the control algorithm as program constants. They are
constants only in that the algorithmic program cannot change their values.
These values are updated each time a trigger causes the input channels to be
scanned. After all input channels are scanned, each of the defined and
enabled control algorithms is executed.

Process Control Out Control output to the process is determined by the executing algorithms. In
general the algorithm assigns a value to one of 64 special "output channel"
identifiers. If the algorithm executes the statement:

0107 = control out _var;
the value of the variable "control_out_var" is placed in the Output Channel
Buffer entry for channel 7. After all active algorithms have been executed,
the buffer values (one for each assigned channel) are sent to the output
Signal Conditioning Plug-ons (SCP) at those channel positions. The
characteristic of the actual output quantity is determined by the type of
output SCP that is installed at the specified channel. For instance, if an
HP E1532 Current Output SCP were installed at the specified channel, the
parameter value could range from -0.01 to +0.01 Amps (10 mA). A
Voltage Output SCP at the channel would allow a parameter value of -16 to
+16 Volts.

Programming Model

You is configure, start, stop, and communicated with the HP E1415 using its
SCPI command set. The module can be in one of two states; either the "idle"
state, or the "running" state. The INITiate[:IMMediate] command moves the
module from the "idle" state to the "running" state. We will call these two
states "before INIT", and "after INIT". See Figure 3-2 for the following
discussion.

Before INIT the module is in the Trigger Idle State and its DSP chip (the
on-board control processor) is ready to accept virtually any of its SCPI or
Common commands. At this point, you will send it commands that
configure SCPs, link input channels to EU conversions, configure digital
input and output channels, configure the trigger system, and define control
algorithms.

Chapter 3 Programming the HP E1415 for PID Control 57

After INIT (and with trigger events occurring), the DSP is busy measuring

input channels, executing algorithm code, sending internal algorithm values

to the CVT, and updating control outputs. To insulate the DSP from

commands that would interrupt its algorithm execution, the HP E1415’s
driver disallows execution of most SCPI commands after INIT. The driver
does allow certain commands that make sense while the module is running
algorithms. These are the commands that read and update algorithm
variables, retrieve CVT and FIFO data, and return Status System values. The
Command Reference Section (Chapter 6) specifies whether a command is
accepted before or after INIT.

The next section in this chapter ("Executing the Programming Model")
shows the programming sequence that should be followed when setting up
the HP E1415 to run algorithms .

Before INIT Power-On
Commands Accepted:
All commands exept:
*TRG, TRIGGER, and ALG:UPD:CHAN
Trigger Idle
State
INITiate[:IMM]
After INIT yes
Commands Accepted:
Waiting for Trig Count

*RST Trigger State >
ABORT 99 Exhausted?
Most of ALG subsystem
ARM[:IMM]
FETCH? TIMer or other
FORMAT trigger event no
SENSe:DATA ...
STATuS ...
SYSTem ... o) *RST or ABORT?
*TRG & TRIGger[:IMMediate] (if TRIG:SOUR is HOLD) Input

Execute Algs,

Output

Figure 3-2. Module States

Executing the Programming Model

This section shows the sequence of programming steps that should be used
for the HP E1415. Within each step, most of the available choices are shown
using command sequence examples, with further details available in the

58 Programming the HP E1415 for PID Control Chapter 3

Command Reference Chapter 6.

IMPORTANT! Most programming difficulties can be resolved by you if you know what's
wrong. It is very important while developing your application that you
execute the SYSTem:ERRor? command after each programming command.
This is the only way you will know if there is a programming error.
SYST:ERR? returns an error number and description (or +0, "No Error").

Power-on and *RST Some of the programming operations that follow may already be set after
; Power-on or after a *RST command. Where these default settings coincide
Default Settlngs with the configuration settings you require, you do not need to execute a
command to set them. These are the default settings:

® No agorithms defined
® No channels defined in channel lists
® Programmable SCPs configured to their Power-on defaults
(see individual SCP User’s Manuals)
® All analog input channels linked to EU conversion for voltage
*® All analog output channels ready to take values from an algorithm
® All digital I/0 channels set to input static digital state

* ARM:SOURce IMMediate

®* TRIGger:SOURce TIMer

* TRIGger: COUNt INF (0)

* TRIGer:TIMer 010 (10 msec)
* FORMat ASC,7 (ASCII)

* SENSe:DATA:FIFO:MODE BLOCKking

Figure 3-3 provides a quick reference to the Programming model. Refer to
this, together with the “Programming Overview Diagram” to keep an
overview of the HP E1415 SCPI programming sequence. Again, where
default settings are what you want, you can skip that configuration step

Chapter 3 Programming the HP E1415 for PID Control 59

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Step 7

Step 8

Step 9

Step 10

Step 11

Step 12

Power On or *RST

Set up SCP Amps, Filters, and
Measurement Excitation Sources

v

Link Engineering

Units (Functions)

to Analog Input Channels

A 4

Set up Digital

/0 Channels

v

Calibrate Ch

annel Set-up

(after 1 hour warm-up)

A

Set up Trig

ger System

A

Select Data Format

Select FI

FO Mode

(if using History Mode)

A

Define Global Variables

(opti

onal)

A 4

Set up Algo

rithm(s) and

Preset Algorithm Variables

A

Initiate Trig

ger System

— Trigger events execute algs —»

A

Retrieve Data

A

Modify Algorithm Variables

INP: ..., OUTP: ... commands

[SENSe:]JFUNC: ... commands

INP: ..., OUTP: ..., [SENSe] ...,.SOUR: ...

*CAL?, or CAL:SETup command

ARM:SOUR, TRIG:SOUR, TRIG:COUN,
TRIG:TIMer commands

FORMat command

[SENSe:]DATA:FIFO:MODE command

ALG:DEF "GLOBALS", ...
command

ALG:DEF, ALG:ARRay, ALG:SCALar,
ALG:SCAN:RATio, ALG:UPDate

INITiate command

SENS:DATA:FIFO: ..., SENS:CVT: ...
ALG:SCAL?, and ALG:ARR? commands

ALG:ARRay, ALG:SCALar,
ALG:STAT, ALG:SCAN:RATio, ALG:UPD

Figure 3-3. Programming Sequence

60 Programming the HP E1415 for PID Control

Chapter 3

Programming Overview Diagram

VXI Intterupts

Q ALG:DEF 'GLOBALS', ...

INPut:FlLter

INPut:GAIN
OUTPut:CURRent:AMPLitude
OUTPut:CURRent:STATe
OUTPut:SHUNt
OUTPut:VOLTage:AMPIlitude

©

INPut:POLarity
SENSe:FREQuency:APERature
SENSe:FUNCtion:CONDition
SENSe:FUNCtion:FREQuency
SENSe:FUNCtion:TOTalize
SENSe:FREQuency
SENSe:TOTalize:RESet:MODE

®

SCP Dato Bus

OUTPut:POLarity
OUTPut:TYPe
SOURce:FM:STATe
SOURce:FUNCtion:CONDition
SOURce:FUNCtion:PULSe
SOURce:FUNCtion:SQUare
SOURce:PULM:STATe
SOURce:PULSe:PERiod
SOURce:PULSe:WIDth

(analog input SCP config, analog output SCP programming, digital SCP 1/0 ond config)
Ch 00
o <
Stati N " SCP N
mwwﬂw.w. _ @ ALG:DEF 'ALGn, ... Aigorithm . S .
ALG:ARRay Memory . .
. ALG:SCALar °
STATus: . _ ALG:SCAN:RATio @ T &
0
@ ALG:UPDate [SENSe:]JFUNCtion:RESistance 3
Error | [SENSe:]FUNCtion:STRAIN: . . . mm_u =
Queue _ [SENSe:]FUNCtion: TEMPerature 5 5
[SENSe:]FUNCtion:VOLTage H °
SYSTem:ERRror? [SENSe:]DATA:CVTable? a T o
_ :RESet o,_\._:_.m:. g $
alue
Table W M_
Formatter | Control Pri EU Conversion A/D W SCP el
_ oo - 2 E
Y eadin 2
FORMat[:DATA] [SENSe:]DATA:FIFO[:ALL]? Bulfer’ m 3 oh 23
:COUNt? (64K) (EU table) S
@ _ ‘HALF? < -] :
B 2 = o -] .
O 33 (o 2 i
: ! - < Function (range selection) @
_ ‘RESet g qand . g .
E . ; k) ange K]
[SENSe:]DATA:FIFO:MODE = Definition 2 Ch 55
List -
SCPI/CSCPI Driver 5]
/ ST briver | @ scP ©
Scan Multiplexer
List (next channeld) Control Ch 63
SCP_Trigger ﬁ
ARM:SOURce @ E
o I
g pd
N TRIGger:TIMer w, _Am ATn
S ° R 5
3 < Trigger £ INITitate:IMMidiate £
n § — Timer 5
£3 2
< TRIGger:SOURce “CAL? o
™ TiMer @ SCPlugon FTRigger @ O>_..m~m=o:_mm‘_.:n
BUS | :SETup?
S TRIGger LIMit
EXTernal 5
25
HOLD L . Mlo _wa e S Cal
.} nable [rq Source . .
MMediote e Selector | OUTPULTRIGger:SOURce CALibration: CONFigure:RESistance Yoltage —0~"0—
TTLTrg<n>, 8 lines 2 “.<Or._.mom
O SCP Tri = :VALue:RESistance
rigger :VOLTage |\/\/\/\/\|O\
B o—
Trigger Counter _ ._._._.W%mno_nw_ucp OUTPut:TTLTrg<n> WMMWM Cal Resistor
) ’ . oo
TRIGger:COUNt TILTRG7 TTLTRGO Cal Zero
VXlbus TTLTRGn 8 lines

61

Programming the HP E1415 for PID Control

Chapter 3

Setting up Analog Input and Output Channels

This section covers configuring input and output channels to provide the
measurement values and output characteristicsthat your algorithms need to
operate.

Confi gu rin 0 Thisstep applies only to programmable Signal Conditioning Plug-ons such
as the HP E1503 Programmable Amplifier/Filter SCP, the HP E1505
Prog rammable Current Source SCP, the HP E1510 Sample and Hold SCP, and the
Analog SCP HP E1511 Transient Strain SCP. See the particular SCP’s User’s manual to
determine the gain, filter cutoff frequency, or excitation amplitude
Parameters selections that it may provide.

Setting SCP Gains An important thing to understand about input amplifier SCPs is that given a
fixed input value at a channel, changes in channel gain do not change the
value your algorithm will receive from that channel. The DSP chip (Digital
Signal Processor) keeps track of SCP gain and Range Amplifier settings, and
"calculates" a value that reflects the signal level at the input terminal. The
only time this in not true is when the SCP gain chosen would cause the
output of the SCP amplifier to be too great for the selected A/D range. As an
example; with SCP gain set to 64, an input signal greater than +0.25 volts
would cause an over-range reading even with the A/D set to its 16 volt range.

The gain command for SCPs with programmable amplifiers is:
INPut:GAIN <gain>,(@<ch_list>) to select SCP channel gain.

The gain selections provided by the SCP can be assigned to any channel
individually or in groups. Send a separate command for each gain selection.
An example for the HP E1503 programmable Amp&Filter SCP:

To set the SCP gain to 8 for channels 0, 4, 6, and 10 through 19 send:
INP:GAIN 8,(@100,104,106,110:119)

To set the SCP gain to 16 for channels 0 through 15, and to 64 for channels
16 through 23 send:

INP:GAIN 16,(@100:115)
INP:GAIN 64,(@116:123)

or to combine into a single command message:

INP:GAIN 16,(@100:115);GAIN 64,(@116:123)

Setting Filter The commands for programmable filters are:

Cutoff Frequency _
INPut:FILTer[:LPASS]:FREQuency <cutoff freg>,(@<ch_list>) to

select cutoff frequency

INPut:FILTer[:LPASS][:STATe] ON | OFF,(@<ch_list>) to enable or
disable input filtering

62 Programming the HP E1415 for PID Control Chapter 3

Setting the HP E1505
Current Source SCP

The cutoff frequency selections provided by the SCP can be assigned to any
channel individually or in groups. Send a separate command for each
frequency selection. For example:

To set 10 Hz cutoff for channels 0, 4, 6, and 10 through 19 send:
INP:FILT:FREQ 10,(@100,104,106,110:119)

To set 10 Hz cutoff for channels 0 through 15, and 100 Hz cutoff for
channels 16 through 23 send:

INP:FILT:FREQ 10,(@100:115)
INP:FILT:FREQ 100,(@116:123)

or to combine into a single command message

INP:FILT:FREQ 10,(@100:115);FREQ 100,(@116:123)

By default (after *RST or at power-on) thefilters are enabled. To disable or
re-enableindividual (or al) channels, usethe INP:FILT ON | OFF,
(@<ch_list>) command. For example, to program all but afew filters on,
send:

INP:FILT:STAT ON,(@100:163) all channel’s filters on (same as
at *RST)

INP:FILT:STAT OFF,(@100, 123,146,163) only channels 0, 23, 46, and 63
OFF

The Current Source SCP supplies excitation current for resistance type
measurements. These include resistance, and temperature measurements
using resistance temperature sensors. The commands to control Current
Source SCPs are:

OUTPut:CURRent:AMPL itude <amplitude>,(@<ch_list>) and
OUTPut:CURRent[:STAT €] <enable>.

® The amplitude parameter setsthe current output level. It is specified in
units of Amps DC and for the HP E1505 SCP can take on the values
30e-6 (or MIN), and 488e-6 (or MAX). Select 488A for measuring
resistances of |ess than 8,000 Ohms. Select 30pA for resistances of
8,000 Ohms and above.

® The ch_list parameter specifies the Current Source SCP channels that
will be set.

To set channels 0 through 9 to output 30 HA and channels 10 through 19 to
output 488 pA:

OUTP:CURR 30e-6,(@100:109)
OUTP:CURR 488e-6,(@110:119) separate command per output
level

or to combine into a single command message:

OUTP:CURR 30e-6,(@100:109);CURR 488e-6,(@110:119)

Chapter 3

Programming the HP E1415 for PID Control 63

NOTE The OUTPut:CURRent:AMPLitude command is only for programming
excitation current used in resistance measurement configurations. It is does
not program output DAC SCPslike the HP E1532.

Setting the HP E1511 TheHP E1511 Strain Bridge Completion SCP has a programmable bridge
Strain Bridge SCP excitation voltage source. The command to control the excitation supply is

® The <amplitude> parameter can specify 0, 1, 2, 5, or 10 volts for the
HP E1511's excitation voltage.

® The <ch_list> parameter specifies the SCP and bridge channel
excitation supply that will be programmed. There are four excitation
suppliesin each HP E1511.

To set the excitation supplies for channels 0 through 3 to output 2 volts:
OUTP:VOLT:AMPL 2,(@100:103)

NOTE The OUTPut:VOLTage:AMPLitude command is only for programming
excitation voltage used measurement configurations. It is does not program
output DAC SCPslike the HP E1531.

Linking Input This step links each of the module’s channels to a specific measurement
type. For analog input channels this "tells" the on-board control processor
Channels to _EU which EU conversion to apply to the value read on any channel. The
Conversion processor is creating a list of conversion types vs. channel numbers.
The commands for linking EU conversion to channels are:

[SENSe:]JFUNCtion:RESistance <excite_current>,[<range>,]
(@<ch_list>) for resistance measurements

[SENSe:]FUNCtion:STRain:... <excite current>,[<range>,]
(@<ch_list>) for strain bridge measurements

[SENSe:]JFUNCtion: TEM Perature <type>,<sub_type>,[<range>,]
(@<ch_list>) for temperature measurements with thermocouples,
thermistors, or RTDs

[SENSe:]FUNCtion:VOLTage <range>,(@<ch_list>) for voltage
measurements

[SENSe:]FUNCtion:CUSTom <range>,(@<ch_list>) for custom EU
conversions.

64 Programming the HP E1415 for PID Control Chapter 3

NOTE

At Power-on and after *RST, the default EU Conversion is autorange
voltage for all 64 channels.

Linking Voltage
Measurements

To link channels to the voltage conversion send the
[SENSe]FUNCtion:VOLTage [<range>,] (@<ch_list>) command.

® The ch_list parameter specifies which channelsto link to the voltage
EU conversion.

® The optional range parameter can be used to choose afixed A/D
range. Valid values are: .0625, .25, 1, 4, 16, or AUTO. When not
specified, the module uses auto-range (AUTO).

To set channels 0 through 15 to measure voltage using auto-range:

SENS:FUNC:VOLT AUTO,(@100:115)

To set channels 16 and 24 to the 16 volt range, and 32 through 47 to the
.0625 volt range:

SENS:FUNC:VOLT 16,(@116,124)
SENS:FUNC:VOLT .625,(@132:147) must send a command per range

or to send both commands in a single command message:

SENS:FUNC:VOLT 16,(@116,124);VOLT .0625,(@123:147)

NOTE

When using manual range in combination with amplifier SCPs, the EU
conversion will try to return readings which reflect the value of the input
signal. However, itisup to you to choose range valuesthat will provide good
measurement performance (avoiding over-ranges and selecting ranges that
provide good resolution based on the input signal). In general,
measurements can be made at full speed using auto-range. Auto-range will
choose the optimum A/D range for the amplified signal level.

Linking Resistance

Measurements

To link channels to the resistance EU conversion send the
[SENSe:]FUNCtion:RESistance
<excite_current>,[<range>,](@<ch_list>) command.

Resi stance measurements assume that thereis at |east one Current Source
SCP installed (eight current sources per SCP). See Figure 3-4

Chapter 3

Programming the HP E1415 for PID Control 65

Two-Wire Measurement Four-Wire Measurement
(not recommended**)

| Current Source SCP | | Current Source SCP |

— HI Field Wiring HI Field Wiring
‘é’ AVA%AY AYA%AY
e ‘ *150 Ohm 5% | | R
O R
2 o | | o_| |
5 | NN T + NN
@ *150 Ohm 5%
* Because of the 150 Ohm resistor in series with each of the
current source outputs, Two-Wire resistance and temperature
measurements will have a 300 Ohm offset. Any Sense SCP
< H |
** The current source HI terminal is the negative voltage node. c | |
The current source LO terminal is the positive voltage node. g
(@]
3 Lo | |
2 LO
o)
(2]

Figure 3-4. Resistance Measurement Sensing

® The excite_current parameter is used only to tell the EU conversion
what the Current Source SCP channel is now set to. Excite_current is
specified in Amps DC and the choices for the HP E1505 SCP are
30e-6 (or MIN) and 488e-6 (or MAX). Select 488uA for measuring
resistances of |ess than 8,000 Ohms. Select 30pA for resistances of
8,000 Ohms and above.

® The optional range parameter can be used to choose afixed A/D
range. When not specified (defaulted), the module uses auto-range.

® Thech_list parameter specifies which channel(s) to link to the
resistance EU conversion. These channels will sense the voltage
across the unknown resistance. Each can be a Current Source SCP
channel (atwo-wire resistance measurement) or a sense channel
separate from the Current Source SCP channel (afour-wire resistance
measurement). See Figure 3-4 for diagrams of these measurement
connections.

To set channels 0 through 15 to measure resistances greater than 8,000
Ohmsand set channels 16, 20, and 24 through 31 to measure resistances|ess
than 8K (in this case paired to current source SCP channels 32 through 57):

OUTP:CURR:AMPL 30e-6, (@132:147)

set 16 channels to output 30pA for 8KQ or greater resistances
SENS:FUNC:RES 30e-6, (@100:115)

link channels O through 15 to resistance EU conversion (8KQ or greater)
OUTP:CURR:AMPL 488e-6, (@148,149,150:157)

set 10 channels to output 488uA for less than 8KQ resistances

66 Programming the HP E1415 for PID Control Chapter 3

Linking Temperature
Measurements

SENS:FUNC:RES 488e-6, (@116,120,124:132)
link channels 16, 20 and 24 through 32 to resistance EU conversion (less than
8KQ)

To link channels to temperature EU conversion send the
[SENSe:]FUNCtion: TEMPerature <type>, <sub_type>,
[<range>,](@<ch_list>) command.

® Thech_list parameter specifies which channel(s) to link to the
temperature EU conversion.

® The type parameter specifies RTD, THERmistor, or TC (for
ThermoCouple)

® The optional range parameter can be used to choose afixed A/D
range. When not specified (defaulted), the module uses auto-range.

RTD and Thermistor Measurements

Temperature measurements using resi stance type sensorsinvolve al the
same considerations as resistance measurements discussed in the previous
section. See the discussion of Figure 3-4 in "Linking Resistance
Measurements'.

For resistance temperature measurements the sub_type parameter specifies:

® For RTDs; "85" or "92" (for 100 Ohm RTDs with 0.00385 or 0.00392
Ohms/Ohm/Degree C temperature coefficients respectively)

® For Thermistors; 2250, 5000, or 10000 (the nominal value of these
devices at 25 degrees C)

NOTES

1. Resistance temperature measurements (RTDs and THERmistors)
require the use of Current Source Signal Conditioning Plug-Ons. The
following table shows the Current Source setting that must be used
for the following RTDs and Thermistors:

Required Current Temperature Sensor Types
Amplitude and Subtypes
MAX (488pA) RTD,85 | 92 and THER,2250
MIN (30pA) THER,5000 | 10000

2. sub_type values of 2250, 5000, and 10000 refer to thermistors that
match the Omega 44000 series temperature response curve. These
44000 series thermistors have been sel ected to match the curve within
0.1or0.2°C.

Chapter 3

Programming the HP E1415 for PID Control 67

To set channels 0 through 15 to measure temperature using 2,250 Ohm
thermistors (in this case paired to current source SCP channels 16 through
31):

OUTP:CURR:AMPL 488e-6,(@116:131)
set excite current to 488A on current SCP channels 16 through 31

SENS:FUNC:TEMP THER, 2250, (@100:115)
link channels 0 through 15 to temperature EU conversion for 2,250Q
thermistor

To set channels 32 through 47 to measure temperature using 10,000 Ohm
thermistors (in this case paired to current source SCP channels 48 through
63):

OUTP:CURR:AMPL 30e-6,(@148:163)
set excite current to 30pA on current SCP channels 48 through 63

SENS:FUNC:TEMP THER, 10000, (@132:147)
link channels 32 through 47 to temperature EU conversion for 10,000Q
thermistor

To set channel s48 through 63 to measure temperature using 100 Ohm RTDs
withaTC of .00385 Ohm/Ohm/°C (in this case paired to current source SCP
channels 32 through 47):

OUTP:CURR:AMPL 488e-6,(@132:147)
set excite current to 488A on current SCP channels 32 through 47

SENS:FUNC:TEMP RTD, 85, (@148:163)
link channel s48 through 63 to temperature EU conversion for 100Q RTDswith
.00385 TC.

Thermocouple Measurements

Thermocouple measurements are voltage measurements that the EU
conversion changesinto temperature values based on the sub_type
parameter and latest reference temperature value.

® For Thermocouples the sub_type parameter can specify CUSTom, E,
EEXT, J K,N,R, S, T (CUSTom is pre-defined as Type K, no
reference junction compensation. EEXT isthetype E for extended
temperatures of 800°F or above).

To set channels 32 through 40 to measure temperature using type E
thermocouples:

SENS:FUNC:TEMP TC, E, (@132:140)
(see following section to configure a TC reference measurement)

Thermocouple Reference Temperature Compensation

The isothermal reference temperature is required for thermocouple

temperature EU conversions. The Reference Temperature Register must be
|loaded with the current reference temperature before thermocouple channels
are scanned. The Reference Temperature Register can be loaded two ways.

1. By measuring the temperature of an isothermal reference junction

68 Programming the HP E1415 for PID Control Chapter 3

during an input scan.

2. By supplying a constant temperature value (that of a controlled
temperature reference junction) before a scan is started.

Setting up a Reference Temperature M easur ement

This operation requires two commands, the [SENSe:]REFerence command
and the [SEN Se:] REFerence: CHANnNels command.

The [SENSe]REFerence <type>, <sub_type>,[<range>,|(@<ch_list>)
command links channels to the reference temperature EU conversion.

®* Thech_list parameter specifies the sense channel that you have
connected to the reference temperature sensor.

® The type parameter can specify THERmistor, RTD, or CUSTom.
THER and RTD, are resistance temperature measurements and use the
on-board 122 pA current source for excitation. CUSTom is
pre-defined as a Type E thermocouple which has athermally
controlled ice point reference junction.

® The sub_type parameter must specify:

-- For RTDs; "85" or "92" (for 100 Ohm RTDs with 0.00385 or
0.00392 Ohms/Ohm/Degree C temperature coefficients

respectively)
-- For Thermistors; only "5000" (See previous hote on page 67)
-- For CUSTom; only "1"

® The optional range parameter can be used to choose afixed A/D
range. When not specified (defaulted), or set to AUTO, the module
uses auto-range.

Reference Measurement Before Thermocouple Measurements

At this point we are going to introduce you to the concept of the HP E1415's
Scan List. As you define each algorithm, the HP E1415 places any reference
to an analog input channel into the Scan List. When you run algorithms, the
scan list tells the HP E1415 which analog channels to scan during the Input
Phase.

The [SENSe:]REFerence:CHANnels (@ chan>),(@<meas_ch_list>)

is used to place ther&f_chan> channel in the scan list before the related
thermocouple measuring channels mess_chan>. Now when analog
channels are scanned, the HP E1415 will include the reference channel in
the scan list and will scan it before the specified thermocouples are scanned.
The reference measurement will be stored in the Reference Temperature
Register. The reference temperature value is applied to the thermocouple EU
conversions for thermcouple channel measurements that follow.

Chapter 3

Programming the HP E1415 for PID Control 69

A Complete Thermocouple Measurement Command Sequence
The command sequence performs these functions:

® Configures reference temperature measurement on channel 15.

® Configures thermocouple measurements on channels 16 through 23.

® |nstructs the HP E1415 to add channel 15 to the Scan List and order
channels so channel 15 will be scanned before channels 16 through 23.

SENS:REF THER, 5000, (@115) 5K thermistor temperature for
channel 15

SENS:FUNC:TEMP TC,J,(@116:123) Type J thermocouple
temperature for channels 16
through 23

SENS:REF:CHAN (@115),(@116:123) reference channel scanned
before channels 16 - 23

Supplying a Fixed Reference Temperature

The [SENse:]REFerence: TEM Perature <degrees _c¢> command
immediately stores the temperature of a controlled temperature reference
junction panel in the Reference Temperature Register. The value is applied
to all subsequent thermocouple channel measurements until another
referencetemperature valueis specified or measured. Thereisno need to use
SENS:REF:.CHANNELS.

To specify the temperature of acontrolled temperature reference panel:

SENS:REF:-TEMP 50 reference temp = 50 °C
Now begin scan to measure thermocouples
Linking Strain Strain measurements usually employ a Strain Completion and Excitation
Measurements SCP (HP E1506,E1507,E1511). To link channelsto strain EU conversions
send the [SENSe:]FUNCtion:STRain:<bridge type>
[<range>,](@<ch _list>)

® <pridge_type> is not a parameter but is part of the command syntax.
The following table relates the command syntax to bridge type. See
the HP E1506 and HP E1507, and HP E1511 SCPs’ user’s manual for
bridge schematics and field wiring information.

Command Bridge Type
:FBENding Full Bending Bridge
:FBPoisson Full Bending Poisson Bridge
:FPQisson Full Poisson Bridge
:HBENding Half Bending Bridge
:HPOQisson Half Poisson Bridge
[:QUARter] Quarter Bridge (default)

70 Programming the HP E1415 for PID Control Chapter 3

® The ch_list parameter specifies which sense SCP channel(s) to link to
the strain EU conversion. ch_list does not specify channels on the
HP E1506, and 07 Strain Bridge Completion SCPs but does specify
one of the lower four channels of an HP E1511 SCP.

® The optional range parameter can be used to choose afixed A/D
range. When not specified (defaulted), the module uses auto-range.

To link channels 23 through 30 to the quarter bridge strain EU conversion:

SENS:FUNC:STR:QUAR (@123:130) uses autorange

Other commands used to set up strain measurements are:
[SENSe:] STRain:POISson
[SENSe]STRain:EXCitation
[SENSe]STRain:GFACtor
[SENSe]STRain:UNSTrained

NOTE

Because of the number of possible strain gage configurations, the driver
must generate any Strain EU conversion tables and download them to the
instrument when INITiate is executed. This can cause the time to complete
the INIT command to exceed 1 minute.

Custom EU Conversions

Linking Output
Channels to
Functions

See the Command Reference Chapter 6 and the HP E1506/E1507, and
HP E1511 User’'s Manuals for more information on strain measurements.

“Creating and Loading Custom EU Conversion Tables” on page 103.

Analog outputs are implemented either by an HP E1531 Voltage

Output SCP or an HP E1532 Current Output SCP. Channels where these
SCPs are installed are automatically considered outputs. No
SOURce:FUNCtion command is required since the HP E1531 can only
output voltage, while the HP E1532 can only output current. The only way
to control the output amplitude of these SCPs is through the HP E1415’s
Algorithm Language.

Setting up Digital Input and Output Channels

Setting up Digital
Inputs

Setting Input Polarity

Digital inputs can be configured for polarity and depending on the SCP
model, a selection of input functions as well. The following discussion will
explain which functions are available with a particular Digital I/O SCP
model. Setting a digital channel’s input functismvhat defines it as an input
channel.

To specify the input polarity (logical sense) for digital channels use the

Chapter 3

Programming the HP E1415 for PID Control 71

command INPut:POL arity <mode>,(@<ch _list>). This capability is
available on all digital SCP modedls. This setting is valid even while the
specified channel in not an input channel. If and when the channel is
configured for input (an input FUNCtion command), the setting will bein
effect.

® The <mode> paramter can be either NORMal or INVerted. When set
to NORM, an input channel with 3v applied will return alogical 1.
When set to INV, achannel with 3v applied will return alogic O.

® The <ch_list> parameter specifies the channels to configure. The
HP E1533 has 2 channels of 8 bits each. All 8 bitsin a channel take on
the configuration specified for the channel. The HP E1534 has 8 1/O
bits that are individually configured as channels.

To configure the lower 8 bit channel of an HP E1533 for inverted polarity:
INP:POLARITY INV,(@108) SCP in SCP position 1

To configure the lower 4 bits of an HP E1534 for inverted polarity:
INP:POL INV,(@132:135) SCP in SCP position 4

Setting Input Function TheHP E1533 Digital 1/0 SCP and the HP E1534 Frequency/Totalizer SCP
can both input static digital states. The HP E1534 Frequency/Totalizer SCP
can also input Frequency measurements and Totalize the occurrence of
positive or negative edges.

Static State (CONDition) Function

To configure digital channelsto input static states, use the
[SENSe]FUNCtion:CONDition (@<ch_list>) command. Examples:

To set the lower 8 bit channel of an HP E1533 in SCP position 4 to input

SENS:FUNC:COND (@132)
To set the upper 4 channels (bits) of an HP E1534 in SCP pos 2 to input states

SENS:FUNC:COND (@120:123)
Frequency Function

The frequency function uses two commands. For more on this HP E1534
capability see the SCP’s User's Manual.

To set the frequency counting gate time execute:
[SENSe:]JFREQuency:APERature <gate_time>,(@<ch_list>)

Setsthe digital channel function to frequency
[SENSe:JFUNCtion:FREQuency (@<ch_list>)

Totalizer Function
The totalizer function uses two commands also. One sets the channel

function, and the other sets the condition that will reset the totalizer count to
zero. For more on this HP E1534 capability see the SCP’s User's Manual.

72 Programming the HP E1415 for PID Control Chapter 3

To set the HP E1534's totalize reset mode

[SENSe] TOTdizeRESet: MODE INIT | TRIG,(@<ch_list>)

To configure HP E1534 channels to the totalizer function
[SENSe:JFUNCtion:TOTalize (@<ch_list>)

Setting up Digital Digital outputs can be configured for polarity, output drive type, and
Outp uts depending on the SCP model, a selection of output functions aswell. The
following discussion will explain which functions are available with a
particular Digital I/O SCP model. Setting a digital channel’s output function
is what defines it as an output channel.

Setting Output Polarity To specify the output polarity (logical sense) for digital channels use the
command OUTPut:POLarityrode>,(@<ch_list>). This capability is
available on all digital SCP models. This setting is valid even while the
specified channel in not an output channel. If and when the channel is
configured for output (an output FUNCtion command), the setting will be in
effect.

® The <mode> paramter can be either NORMal or INVerted. When set
to NORM, an output channel set to logic O will output a TTL
compatible low. When set to INV, an output channel set to logic 0 will
output a TTL compatible high.

® The <ch_list> parameter specifies the channels to configure. The
HP E1533 has 2 channels of 8 bits each. All 8 bitsin a channel take on
the configuration specified for the channel. The HP E1534 has 8 I/O
bits that are individually configured as channels.

To configure the higher 8 bit channel of an HP E1533 for inverted polarity:
OUTP:POLARITY INV,(@109) SCP in SCP position 1

To configure the upper 4 bits of an HP E1534 for inverted polarity:
OUTP:POL INV,(@132:135) SCP in SCP position 4

Setting Output TheHP E1533 and HP E1534 use output drivers that can be configured as
Drive Type either active or passive pull-up. To configure this, use the command
OUTPuUt:TY PE <mode>,(@<ch_list>). This setting isvalid even while the
specified channel in not an output channel. If and when the channel is
configured for output (an output FUNCtion command), the setting will bein
effect.

® The <mode> parameter can be either ACTive or PASSive. When set to
ACT (the default), the output provides active pull-up. When set to
PASS, the output is pulled up by aresistor.

® The <ch_list> parameter specifies the channels to configure. The
HP E1533 has 2 channels of 8 bits each. All 8 bitsin a channel take on
the configuration specified for the channel. The HP E1534 has 8 1/O
bits that are individually configured as channels.

Chapter 3 Programming the HP E1415 for PID Control 73

To configure the higher 8 bit channd of an HP E1533 for passive pull-up:
OUTP:TYPE PASS,(@109) SCP in SCP position 1

To configure the upper 4 bits of an HP E1534 for active pull-up:
OUTP:TYPE ACT,(@132:135) SCP in SCP position 4

Setting Output Functions Both the HP E1533 Digital I/0O SCP, and HP E1534 Frequency/Totalizer
SCP can output static digital states. The HP E1534 Frequency/Totalizer SCP
can also output single pulses per trigger, continuous pluses that are width
modulated (PWM, and continuous pulses that are frequency
modulated (FM).

Static State (CONDition) Function

To configure digital channels to output static states, use the
SOURce:FUNCtion:CONDition (@<ch_list>) command. Examples:

To set the upper 8 bit channel of an HP E1533 in SCP position 4 to output

SOUR:FUNC:COND (@133)
To set thelower 4 channels (bits) of an HP E1534 in SCP pos 2 to output states

SOUR:FUNC:COND (@116:119)

To configure digital channels to output static states:
Variable Width Pulse Per Trigger

This function sets up one or more HP E1534 channels to output asingle
pulse per trigger (per algorithm execution). The width of the pulse from
these channelsis controlled by Algorithm Language statements. Use the
command SOURce:FUNCtion[:SHAPg]:PULSe (@<ch list>). Example
command sequence:

To set HP E1534 channel 2 at SCP position 4 to output a pulse per trigger

SOUR:FUNC:PULSE (@134)
Example algorithm statement to control pulse width to 1 msec

0134 = 0.001;
Variable Width Pulses at Fixed Frequency (PWM)

This function sets up one or more HP E1534 channels to output atrain of
pulses. A companion command sets the period for the complete pulse

(1 edgeto t edge). Thisof coursefixesthe frequency of the pulsetrain. The
width of the pulses from these channelsis controlled by Algorithm
Language statements.

Use the command SOURce:FUNCtion[:SHAPe]:PULSe (@<ch_list>).
Example command sequence:

Enable pulse width modulation for HP E1534’s first channel at SCP position 4
SOUR:PULM:STATE ON,(@132)

To set pulse period to 0.5 msec (which sets the signal frequency 2 KHz)
SOUR:PULSE:PERIOD 0.5e-3,(@132)

To set function of HP E1534’s first channel in SCP position 4 to PULSE

74 Programming the HP E1415 for PID Control Chapter 3

SOUR:FUNCTION:PULSE (@132)
Example algorithm statement to control pulse width to .1 msec (20%

duty-cycle)
0132 =0.1e-3;

Fixed Width Pulses at Variable Frequency (FM)

This function sets up one or more HP E1534 channels to output atrain of
pulses. A companion command sets the width (1 edgeto | edge) of the
pulses. The frequency of the pulsetrain from these channelsis controlled by
Algorithm Language statements.

Use the command SOURce:FUNCtion[:SHAPg]:PULSe (@<ch_list>).
Example command sequence:

To enable frequency modulation for HP E1534's second channel at SCP
position 4
SOUR:FM:STATE ON,(@133)
To set pulse width to 0.3333 msec
SOUR:PULSE:WIDTH 0.3333e-3,(@133)
To set function of HP E1534’s second channel in SCP position 4 to PULSE
SOUR:FUNCTION:PULSE (@133)
Example algorithm statement to control frequency to 1000 Hz
0133 = 1000;

Variable Frequency Square-Wave Output (FM)
To set function of HP E1534’s third channel in SCP position 4 to output a
variable frequency square-wave.

SOUR:FUNCTION:SQUare (@134)
Example Algorithm Language statement to set output to 20KHz

0134 = 20e3;

For complete HP E1534 capabilities, see the SCP’s User’'s Manual.

Performing Channel Calibration (Important!)

Operation and
Restrictions

The *CAL? (also performed using CAL:SETup then CAL:SETup?) is a
very important step. *CAL? generates calibration correction constants for
all analog input and output channels. *CAL? must be performed in order for
the HP E1415 to deliver its specified accuracy.

*CAL? generates calibration correction constants for each analog input
channel for offset and gain at all 5 A/D range settings. For programmable
input SCPs, these calibration constants are only valid for the current
configuration (gain, and filter cut-off frequency). This means that *CAL?
calibration is no longer valid if you change channel gain or filter settings
(INP:FILT or INP:GAIN), but is still valid for changes of channel function
or range (using SENS:FUNC ...). The calibration becomes invalid if you
move these SCPs to different SCP locations.

For analog output channels (both measurement excitation SCPs as well as
control output SCPs) *CAL? also generates calibration correction constants.
These calibration constants are valid only for the specific SCPs in the

Chapter 3

Programming the HP E1415 for PID Control 75

positionsthey are currently in. The calibration becomesinvalid if you move
these SCPsto different SCP locations.

How to Use *CAL? Whenyou turn power on to the HP E1415 after you havefirst installed your
SCPs (or after you have moved SCPs), the module will use approximate
values for calibration constants. This means that input and output channels
will function although the values will not be very accurate relative to the
HP E1415's specified capability. At this point, make sure the module is
firmly anchored to the mainframe (front panel screws are tight), and let it
warm up for a full hour. After it has warmed up, execute *CAL?.

What *CAL? Does The *CAL? command causes the module to calibrate A/D offset and gain,
and all channel offsets. This may take many minutes to complete. The actual
time it will take your HP E1415 to complete *CAL? depends on the mix of
SCPs installed. *CAL? performs literally hundreds of measurements of the
internal calibration sources for each channel and must allow 17 time
constants of settling wait each time a filtered channel’s calibration source
changes value. The *CAL? procedure is internally very sophisticated and
results in an extremely well calibrated module.

When *CAL? finishes, it returns a +0 value to indicate success. The
generated calibration constants are now in volatile memory as they always
are when ready to use. If the configuration just calibrated is to be fairly
long-term, you should now execute the CAL:STORE ADC command to
store these constants in hon-volatile memory. That way the module can
restore calibration constants for this configuration in case of a power failure.
After power returns, and after the module warms up, these constants will be
relatively accurate.

Re-Execute ® \When you change the channel gain and/or filter cut-off frequency on
*CAL? When: programmable SCPs (using INPut:GAIN, or INPut:FILTer ...)

® When you re-configure SCPsto different locations. Thisistrue even if
you replace an SCP with an identical model SCP because the
calibration constants are specific to each SCP channel’s individual
performance.

* \WWhen the ambient temperature within the mainframe changes
significantly. Temperature changes affect accuracy much more than
long-term component drift. See temperature coefficients in Appendix
A page 305 "Specifications'.

NOTE To save time when performing channel calibration on multiple HP E1415s
in the same mainframe, use the CAL:SETup and CAL:SETup? commands
(See “CALibration:SETup” on page 188. for details).

76 Programming the HP E1415 for PID Control Chapter 3

Defining Standard PID Algorithms

The Pre-defined
PIDA Algorithm

Setpoint | + Error
Variable 2 variable

A

The HP E1415 provides you the choice of two different pre-defined PID
agorithmsthat are widely used in process control.

Figure 3-5 shows the block diagram of the PID algorithm that is defined
when you execute
ALG:DEFINE 'ALGnN’,'PIDA(< inp_channel>,<outp_channel>)’

»| P_factor
Variable
+
| out <outp_chan>
e [85 2)| " [process
/+
,| D_factor
Variable
<inp_chan>
channel

Figure 3-5. The Simple PID IAlgorithm "PIDA"

The Pre-defined
PIDB Algorithm

PIDA agorithmimplementstheclassic PID controller. Thisimplementation
was designed to be fast. In order to be fast, this algorithm provides no
clipping limit, darm limits, status management, or CVT/FIFO
communication (History Modes). The algorithm performs the following
calculations each timeit is executed:

Error = Setpoint - <inp_chan>

|_out=1_out + | _factor * Error

<outp_chan> = P_factor * Error + |_out + D_factor * (Error - Error_old)
Error_old = Error

See the program listing for PIDA in Appendix D page 347.

Figure 3-6 shows the block diagram of a more advanced algorithm that is
favored in process control because of the flexibility allowed by itstwo
differential terms. The "D" differential term is driven by changesin the
processinput measurement. The"SD" differential termisdriven by changes
inthe setpoint variablevalue. Y ou can definethisalgorithm by executing the
command ALG:DEFINE 'ALGn’,’PIDB(< inp_channel>,
<outp_channel>,<alarm_chan>)’

Chapter 3

Programming the HP E1415 for PID Control 77

,ISD_factor

Variable |™
SD_out

clip limits variable
status .B3

,| P_factor
Variable

alarm limits
status .B5
7'y

Man_out slew rate limited by
Variable Man_inc variable

Error

manual

<outp_chan>| | hrocess

variable
status .B1
Setpoint Z\ ,| |_factor I_out
Variable + i : variable channel
ariapie g
: . + : 3

:
status .B2 D_olt Man_state
variable Variable

alarm limits »| D_factor status .B4
status .B6 Variable

clip limits
status .BO

A

<inp_chan>
channel

Figure 3-6. The Advanced Algorithm "PIDB"

Clipping Limits ThePIDB algorithm provides clipping limitsfor its |, D, SD terms and the
value sent to <outp_chan>. Values for these terms are not allowed to range
outside of the set limits. The variables that control clipping are:

| term limits; |_max,and|_min
D term limits; D_max, and D_min
SD term limits; SD_max, and SD_min

<outp_chan> limits; Out_max, and Out_min

Alarm Limits ThePIDB agorithm provides Alarm Limitsfor the process variable PV and
the Error term variable Error. If these limits are reached, the algorithm sets
the value of <alarm_chan> true and generates a VV XIbus interrupt. The
variables that control alarm limits are:

Process Variable (from <inp_chan>); PV_max, and PV_min
Error term alarm limits; Error_max, and Error_min

The max and min limits for clipping and alarms are set to 9.9E+37 and
-9.9E+37 respectively when the algorithm is defined. This effectively turns
the limits off until you change these values with the ALG:SCALAR and
ALG:UPDATE commands as described in "Pre-setting PID Variables and
Coefficients" later in this section.

Manual Control The PIDB agorithm provides for manual control with "bumpless" transfer
between manual and automatic control. The variables that control the
manual mode are;

Auto/Manual control; Man_state (0 = automatic (default), 1 = manual)
Manual output control; Man_out (defaults to current auto value)

78 Programming the HP E1415 for PID Control Chapter 3

Manual control dew rate;Man_inc (defaults to 9.99E+37 (fast change))

Usethe ALG:SCALAR and ALG:UPDATE commands to change the
manual control variables before or after the algorithm is running.

Status Variable ThePIDB agorithm uses 7 bitsin a status variable (Status) to record the
state of clipping and alarm limits, and the automatic/manual mode. When a
limit is reached or the manual modeis set, the algorithm setsa statusbit to 1.

Output (<outp_chan>) at clipping limit; Status.BO
| term (I _out) at clipping limit; Status.B1
D term (D_out) reached at limit; Status.B2
SD term (SD_out) at clipping limit; Status.B3
Control mode (Man_state) is manual; Status.B4
Error term (Error) out of limits; Status.B5

Process Variable (<inp_chan>) out of limits; Status.B6

History Mode ThePIDB algorithm provides two modes of reporting the values of its
operating variables. A variable History_mode controls the two modes. The
default history mode (History_mode = Q) places the following algorithm
values into elements of the Current Value Table (the CVT):

Process Variable (<inp_chan>) valueto CVT dement (10* n) +0

Error Term variable (Error) valueto CVT element (10*n+1

Output (<outp_chan>) valueto CVT element (10*n) +2

Status word bits 0 through 6 (Status) to CVT element (10* n) + 3
Where n is the number of the algorithm from 'ALGn’
So ALGL1 places values into CVT elements 10 through 13, ALG2 places
values in CVT elements 20 through 23 ... ALG32 places values into CVT
elements 320 through 323

When you seHistory_mode to 1, the operating values are sent to the CVT
as above and they are sent to the FIFO buffer as well. The algorithm writes
a header entry first. The header value is (n * 256) + 4, where n is the
algorithm number from 'ALGn’, and the number 4 indicates the number of
FIFO entries that follow for this algorithm. This identifies which PIDB
algorithm the 5 element FIFO entry is from.

See the program listing for PIDB in Appendix D page 347.

Defining a PID with selectthe PID algorithm you want to use (PIDA or PIDB). Determine which
. channels to specify for the PID input, PID output, and optionally the digital
ALG:DEFINE channel to use as an alarm channel. Execute the command
ALGorithm[:EXPLicit]:DEFine '<alg_name>','< alg_def_string>'.

® <alg_name> isALGL for the first defined algorithm, ALG2 for the
second etc. up to the maximum of ALG32. The"ALG" is not case
sensitive. That is, ALGL, algl, aLgl are all equivalent.

® <alg def string> contains a string that selects the PID algorithm
(PIDA..., or PIDB...), and specifies the input, and output "channels’.
PIDB also takes an alarm "channd". The general form of the string is:
PIDx(<inp_channel>,<outp_channel>,<alarm_channel>)’

Chapter 3 Programming the HP E1415 for PID Control 79

Where x isA, or B. Note that <alarm_channel> is only supported for
PIDB.

Enclose<alg_def_string> within single quotes (apostrophe character), or
double quotes.

The <alg_def_string> commands the driver’s translator function to
download the program code for the selected PID algorithm into the
HP E1415’s algorithm memory space where is can be executed. The
source code listings for the available PIDs can be seen in Appendix D
page 347.

To select PID algorithm PIDB and use channel O for its input, channel 8 for
its output, and channel 24, bit 0 as the alarm channel, execute:
ALG:DEF 'ALG1','PIDB(1100,0108,0124.B0)’

NOTES 1. If you receive error messages when you define a PID algorithm, the
most common causes are: 1. Trying to re-define an algorithm by the
same name, or 2. Using a"channel" identifier that is not defined
(make sure the first letter in channel specifier is upper case, and that
bit identifiers start with the upper case B)

2. The"channels" specified in the PID definition can be any GLOBAL
variable identifier that you have defined prior to the algorithm
definition. Use ALG:DEF 'GLOBALS',’<var_declaration_source>'".

ALG:DEF 'GLOBALS''static float pid1_outp, pid2_inp;’
ALG:DEF 'ALG1'/'PIDB(I1114,pid1_outp,0124) Useglobal for PIDB output
ALG:DEF 'ALG2','PIDB(pid2_inp,0132,0124) Useglobal for PIDB input

Use ALG:SCALAR 'GLOBALS',’<var<->_name>’,<value> to assign a
value. Use ALG:SCALAR? 'GLOBALS’,'<var_name>' to read the value.

Pre-setting PID Variables and Coefficients

Pre-setting PID To send values to variables in standard PID algorithms you use the
variables command

ALGorithm[:EXPLicit]:SCALar <alg name>,<variable_name>,<val
ue> .

To set PID ALG1's gain to 5, and "turn off" the | and D term send:

ALG:SCALAR 'ALG1','P_factor’,5 st gainto 5

ALG:SCALAR 'ALG1',l_factor’,0 turn off | term

ALG:SCALAR 'ALG1','D_factor’,0 turn off D term

ALG:SCALAR 'ALG1’,'Setpoint’,8 adjust Setpoint to 8 volts

ALG:UPDATE causeall variablesto beupdated
immediately

80 Programming the HP E1415 for PID Control Chapter 3

Defining Data Storage

Sp eC|fy| ng the Theformat of the values stored in the FIFO buffer and CV T never changes.
Data Format They are always stored as | EEE 32-hit Floating point numbers. The
FORMat <format>[,<length>] command merely specifieswhether and how
the valueswill be converted asthey aretransferred from the CVT and FIFO
to the host computer.

® The <format>[,<length>] parameters can specify:

PACKED Same as REAL,64 except for the values of
IEEE -INF, |IEEE +INF, and Not-a-Number
(NaN).
See FORMat command in Chapter 5 for details.
REAL,32 means real 32-hit (no conversion, fastest)
REAL same as above
REAL,64 means real 64-bit (values converted)
ASCii,7 means 7-bit ASCII (values converted)
ASCii same as above (the * RST condition)

To specify that valuesareto remain in | EEE 32-bit Floating Point format for
fastest transfer rate:

FORMAT REAL,32

To specify that values are to be converted to 7-bit ASCII and returned as a
15 character per value comma separated list:

FORMAT ASC,7 The*RST, * TST? and power-on
default format

or

FORM ASC same operation as above

Selecting the The HP E1415's FIFO can operate in two modes. One mode is for reading
FIFO Mode FIFO values while algorithms are executing, the other mode is for reading
FIFO values after algorithms have been halted (ABORT sent).

® BLOCKing; The BLOCking modeisthe default and is used to read the
FIFO while algorithms are executing. Your application program must
read FIFO values often enough to keep it from overflowing (See
“Continuously Reading the FIFO (FIFO mode BLOCK)" on
page 89.). The FIFO stops accepting values when it becomes full
(65,024 values). Values sent by algorithms after the FIFO is full are
discarded. The first value to exceed 65,024 sets the
STAT:QUES:COND? bit 10 (FIFO Overflowed), and an error
message is put in Error Queue (read with SYS:ERR? command).

® Overwrite; When the FIFO fills, the oldest valuesin the FIFO are
overwritten by the newest values. Only the latest 65,024 values are
available. In OVERwrite mode the module must be halted (ABORT
sent) before reading the FIFO (See “Reading the Latest FIFO Values

Chapter 3 Programming the HP E1415 for PID Control 81

(FIFO mode OVER)” on page 90.). This mode is very useful when
you want to view an algorithm’s response to a disturbance. Run the
algorithm withHistory_mode set to 1. Disturb the loop with a step
change. Stop the algorithm with the ABORT command. The FIFO
records the latest 13,004 5-value entries from a PIDB.

To set the FIFO mode (blocking is the *RST/Power-on condition):

[SENSe:]DATA:FIFO:MODE OVERWRITE select overwrite mode
[SENSe:IDATA:FIFO:MODE BLOCK select blocking mode

Setting up the Trigger System

Arm and Trigger Figure 3-7 shows the trigger and arm model for the HP E1415. Note that
Sources when the Trigger Source selected is TIMer(the default), the remaining
sources become Arm Sources. Using ARM:SOUR allows you to specify an
event that must occur in order to start the Trigger Timer. The default
Arm source is IMMediate (always armed).

ARM:SOURce <source>

1 1
1 |
1 !
1 1
. |
1 — !
! £ TRIGger:TIMer <interval> !
1 |
1 2 1
1 J‘; 1
' g Trigger X
1 = Timer !
1 2 1
1 (/O) |
l s |
1 % !
' i TRIGger:SOURce <source>
1 1
1 |
! ! TIMer N
1 1 %
8 BUS ~--f-cf-poq-cfopiccioiicioio i 8
3 [
3 EXTernal 2 Internal
5 HOLD s Trigger Trigger Signal
g - o Enable
g IMMediate »n
= o]
E TTLTrg<n> 13
P SCP Trg =
Trigger
Counter

TRIGger:COUNt <count>
Figure 3-7. Logi

Selecting the In order to start an algorithm execution cycle, a trigger event must occur.
Trigger Source The source of this event is selected with the TRIGger:SOURoer ce>
command. The following table explains the possible choicessturee>.

82 Programming the HP E1415 for PID Control Chapter 3

Parameter Value Source of Trigger (after INITiate:... command)

BUS TRIGger[:IMMediate], *TRG, GET (for HP-IB)
EXTernal "TRG" signal input on terminal module
HOLD TRIGger[:IMMediate]
IMMediate The trigger signal is always true (scan starts when an
INITiate:... command is received).
SCP SCP Trigger Bus (future HP or SCP Breadboard)
TIMer The internal trigger interval timer (must set Arm source)
TTLTrg<n> The VXlbus TTLTRG lines (n=0 through 7)
NOTES 1. When TRIGger:SOURce s not TIMer, ARM:SOURce must be set to

IMMediate (the *RST condition). If not, the INIT command will
generate an error -221," Settings conflict”.
2. When TRIGger:SOURce is TIMer, the trigger timer interval

(TRIG:TIM <interval>) must allow enough time to scan al channels,

execute all algorithms and update all outputs or a+3012, "Trigger

Too Fast" error will be generated during the algorithm cycle. See the

TRIG:TIM command on page 285 for details.

Selecting Trigger Timer

Arm Source

To set the trigger source to the internal Trigger Timer (the default):
TRIG:SOUR TIMER now select ARM: SOUR

To set the trigger source to the Externa Trigger input connection:
TRIG:SOUR EXT an external trigger signal

To set the trigger sourceto aVXIbus TTLTRG line
TRIG:SOUR TTLTRG1 the TTLTRGL1 trigger line
Figure 3-7 shows that when the TRIG:SOUR is TIMer, the other trigger

sources become Arm sources that control when the timer will start. The
command to select the arm source is ARM:SOURce <source>.

Chapter 3

Programming the HP E1415 for PID Control

83

® The <source> parameter choices are explained in the following table

Parameter Value Source of Arm (after INITiate:... command)
BUS ARM[:IMMediate]
EXTernal "TRG" signal input on terminal module
HOLD ARM[:IMMediate]
IMMediate The arm signal is always true (scan starts when

an INITiate:... command is received).

SCP SCP Trigger Bus (future HP or SCP Breadboard)
TTLTrg<n> The VXlbus TTLTRG lines (n=0 through 7)

NOTE When TRIGger:SOURceis not TIMer, ARM:SOURce must be set to
IMMediate (the * RST condition). If not, the INIT command will generate
an error -221," Settings conflict".

To set the external trigger signal as the arm source:

ARM:SOUR EXT trigger input on connector
module

PI’OQ ramming the WhentheHP E1415istri ggered, it beginsitsalgorithm execution cycle. The
; : time it takesto complete a cycle is the minimum interval setting for the
T”gger Timer Trigger Timer. If programmed to a shorter time, the module will generate a
"Trigger too fast" error. So, how can you determine this minimum time?
After you have defined all of your algorithms, you send the ALG:TIME?
command with its <alg_name> parameter set to 'MAIN’. This causes the
HP E1415's driver to analyze the time required for all four phases of the
execution cycle; Input, Update, Calculate, and Output. The value returned
from ALG:TIME? 'MAIN’ is the minimum allowable Trigger Timer
interval. With this information you now execute the command
TRIGger:TIMer <nterval> and set interval> to the desired time that is
equal to or greater than the minimum. See "Starting the PID Algorithm" in
a later section in this Chapter for more on phases of the execcution cycle.

Settlng the Trlgger The Trigger Counter controls how many trigger events will be allowed to
Counter start an input-calculate-output cycle. When the number of trigger events set
with the TRIGger:COUNt command is reached, the module returns to the
Trigger Idle State (needs to be INITiated again). The default Trigger Count
is 0 which is the same as INF (can be triggered an unlimited number of
times). This setting will be used most often because it allows un-interrupted
execution of control algorithms.

To set the trigger count to 50 (perhaps to help debug an algorithm):
TRIG:COUNT 50 executealgorithms50 timesthen

84 Programming the HP E1415 for PID Control Chapter 3

Outputting Trigger

Signals

return to Trig Idle Sate.

The HP E1415 can output trigger signals on any of the VXIbus TTLTRG
lines. Usethe OUTPut: TTLTrg<n>[:STATe] ON | OFF command to select
one of the TTLTRG lines and then choose the source that will drive the
TTLTRG linewith the command OUTPut: TTL Trg: SOURce command. For
details see OUTP: TTLTRG commands starting on page 224

Tooutput asignal onthe TTLTRGL1 line each timethe Trigger Timer cycles
execute the commands:

TRIG:SOUR TIMER select trig timer astrig source

OUTP:TTLTRG1 ON select and enable TTLTRGL line

OUTP:TTLTRG:SOUR TRIG each trigger output on
TTLTRG1

INITiating/Running Algorithms

Starting the PID

Algorithm

When the INITiate[:IMMediate] command is sent, the HP E1415 buildsthe
input Scan List from theinput channel syou referenced when you defined the
algorithm with the ALG:DEF command above. The module also enters the
Waiting For Trigger State. In this state, all that is required to run the
algorithmisatrigger event for each pass through the i nput-cal cul ate-output
cycle. Toinitiate the module, send the command:

INIT module to Waiting for Trigger
Sate

When an INIT command is executed, the driver checks several interrelated
settings programmed in the previous steps. If there are conflicts in these
settings an error message is placed in the Error Queue (read with the

SY ST:ERR? command). Some examples:

® |f TRIG:SOUR isnot TIMer then ARM:SOUR must be IMM ediate.

® Thetime it would take to execute all agorithmsislonger than the
TRIG:TIMER interval currently set.

Once the moduleisINITiated it can accept triggers from any source
specified in TRIG:SOUR.

TRIG:SOUR TIMER (*RST default)

ARM:SOUR IMM (*RST default)

INIT INIT starts Timer triggers
or

TRIG:SOUR TIMER

ARM:SOUR HOLD

INIT INIT readies module
ARM ARM starts Timer triggers.

... and the algorithms start to execute.

Chapter 3

Programming the HP E1415 for PID Control 85

4 1 2 3 4 1

TPUT INPUT | UPDATE EXECUTE ALGS OUTPUT INP!
ut table from SCP | variables & | execute all enabled algorithms cee output table from ¢
to SCP channels, algorothms sent to SCP chanr

nnels analog & channels analo
digital digit

A

[Set by ALG:OUTPUT:DELay (if any) ———p

Trigger Event Trigger Event

Figure 3-8. Sequence of Loop Operations

The Operating TheHP E1415 has four major operating phases. Figure 3-8 shows these
Sequence phases. A trigger event starts the sequence:

1. (INPUT); the state of all digital inputs are captured and each analog
input channel that is linked to an algorithm variable is scanned.

2. (UPDATE); The update phase is a window of time made large
enough to process al variables and algorithm changes made after
INIT. Itswidth is specified by ALG:UPDATE:WINDOW. This
window is the only time variables and algorithms can be changed.
Variable and algorithm changes can actually be accepted during other
phases, but the changes don't take place until an ALG:UPDATE
command is received and the update phase begins. If no
ALG:UPDATE command is pending, the update phase is simply used
to accept variable and algorithm changes from the application
program (using ALG:SCAL, ALG:ARR, ALG:DEF). Data acquired
by external specialized measurement instruments can be sent to your
algorithms at this time.

3. (CALCULATE); all INPUT and UPDATE values have been made
available to the algorithm variables and each enabled algorithm is
executed. The results to be output from algorithms are stored in the
Output Channel Buffer.

4. (OUTPUT); each Output Channel Buffer value stored during
(CALCULATE) is sent to its assigned SCP channel. The start of the
OUTPUT phase relative to the Scan Trigger can be set with the SCPI
command ALG:OUTP:DELay.

Reading Running Algorithm Values

The PIDB algorithm stores its most important working values into the
Current Value Table (CVT) each time it executes. Further, by changing the

86 Programming the HP E1415 for PID Control Chapter 3

variable named "History_mode" from0to 1, PIDB will also send thesevalue
to the FIFO buffer. In addition, any PID algorithm variable can be read
directly from the running algorithm.

Reading Algorithm uUse this method when you want to read a variable that isn't available from
Variables the CVT or FIFO. To directly read algorithm variables you need to know the

names of the variables. The working variables for PIDA and PIDB are listed
in the section “Defining Standard PID Algorithms” on page 77. To read the
values of these variable you use the command ALGorithm:SCALar?
'<alg_name>',’<var_name>'. The command returns the current value of the
variable war_name> from the algorithm alg_name>. With this command
you can look at PIDB variables that are not automatically placed in the CVT.
Since the PIDA algorithm doesn’t send values to the CVT, ALG:SCALAR?
is the only way to view the contents of its working variables. Example for
PIDA:

To return the value of the error term variable from the PIDA 'ALG3’

ALG:SCALAR? 'ALG3'’Error’
program executes "enter" statement now input the value

Reading Algorithm TheCurrent Vaue Table (CVT) contains the latest operating parameter
Values From values from executing PIDB algorithms. The algorithms copy these values
to specific elements of the CVT each time they execute. The CVT isfast
the CVT becauseit isahardware state machine that does not require the DSP to get
involved in the data transaction. Further, asingle SCPI command can return
some or all of the CVT’s values, thus reducing the 1/O load on your
application program.

Organization of the CVT There is a pre-defined organization for the CVT. Standard PID algorithms
are allocated 10 CVT elements. With up to 32 PIDs possible, 320 elements
are allocated for Standard PIDs. ALG1 can use elements 10-19, ALG2 can
use elements 20-29, ALG3 can use elements 30-39, etc. through ALG32
which can use elements 320-329. Each of these 10 elements areas is called
a segment. Note that PIDA does not record its operating values, and PIDB
records 4 values. For PIDB the values stored in each segment are:

Element Variable Description
xx0 Sense Process value monitored
xx1 Error Setpoint value minus Sense value
XX2 Output Process control drive value
XX3 Status Sum of bit values for Clips/Alarms exceeded
xXx4 not used
XX5 not used
XX6 not used
XX7 not used
XX8 not used
XX9 not used

The CVT has a total size of 512 elements. Elements 10 through 511 are
available to algorithms. Elements 0 through 9 are reserved for internal use.

Chapter 3 Programming the HP E1415 for PID Control 87

NOTE After *RST/Power-on, each element in the CVT contains the |EEE-754
value "Not-a Number" (NaN). Channel values which are a positive
overvoltage return |EEE +INF and negative overvoltage return |EEE -INF.
Refer to the FORMat command in on page 206 for the NaN, +INF, and -INF
values for each dataformat.

The command used to return values from CVT elementsisthe

[SENSe:]DATA:CVT? (@<element list>). <element_list> hasthe same
form asa<ch _list> parameter. The format of returned datais dependent on
the current setting from the FORMat command.

To access the latest values from PIDB algorithms ALGL:

SENS:DATA:CVT? (@10:13) returns Sense, Error, Output,
and Status values from ALG1
execute program input statement here must input 4 values

To return the latest values from PIDB Algl and PIDB ALG2:

SENS:DATA:CVT? (@10:13,20:23) returns Sense, Error, Output,
and Status values from ALGs 1
and 2

execute program input statement here must input 8 values

Toreset the CVT > (and set dl valuesto NaN), send the command
[SENSe:]DATA:CVTable:RESet.

Reading History Thealgorithm history modeenablesPIDB algorithmsto send their operating
values to the FIFO buffer. To enable the PIDB algorithm to send its
Mode Values From operating valuesto the FIFO, set the History _modevariableto 1. If you need
the FIFO toretrieve the value of the working variables from every execution of your
agorithm, the FIFO is the best choice. Since it is a buffer that can store up
to 65,024 values, your application program can read the FIFO values
intermittently and still keep up with the data rate from the algorithm. The
commands provided for reading the FIFO are:

FIFO Transfer Commands

[SENSe:]DATA:FIFO[:ALL]?returns al values remaining in the FIFO.
This command should be used only when no more values are being placed
in the FIFO (algorithms stopped).

[SENSe]DATA:FIFO:HALF?returns 32,768 val ues (approximately half of
the FIFO capacity) when they become available. This command completes
only after the 32,768 values are transferred.

[SENSe]DATA:FIFO:PART? <n_values> returns the number of values
specified by <n_values> (2,147,483,647 maximum). This command
completes only after n_values have been transferred.

88 Programming the HP E1415 for PID Control Chapter 3

FIFO Status Commands

[SENSe]DATA:FIFO:COUNLt? returns a count of the valuesin the FIFO
buffer. Usewiththe DATA:FIFO:PART?or DATA:FIFO:ALL?commands

[SENSe:]DATA:FIFO:COUNt:HALF?returnsa 1 if the FIFO is at least
half full (32,768 values) or a0 if not. Use with the DATA:FIFO:HALF?
command.

All of the FIFO commands except SENS:DATA:FIFO:ALL? can execute
while the modul e continues to run algorithms. Once a FIFO Transfer
command is executed, the instrument can not accept other commands until
the transfer is compl ete as specified for each command above. The FIFO
Status commands allow you to poll the instrument for availability of values
before executing a transfer command.

Which FIFO Mode? Theway you will read the FIFO depends on how the FIFO mode was set in
the programming step 7 of the “Programming Sequence” on page 60.

Continuously Reading the FIFO (FIFO mode BLOCK)

If you are going to read the FIFO while algorithms are running you must set
the FIFO mode to SENS:DATA:FIFO:MODE BLOCK. In this mode if

the FIFO fills up, it stops accepting values from algorithms. The algorithms
continue to execute, but the latest data is lost. To avoid losing any FIFO data,
your application needs to read the FIFO often enough to keep it from
overflowing. Here’s a flow diagram to show you where and when to use the
FIFO commands.

C Begin Data Retrieval)

Y

STAT:OPER:COND?
/ (bit 4 "measuring”)

yes

Algorithm Stopped?

Enough Values
in FIFO?

—~—— DATAFIFO:COUNT? ———

Execute Bulk Transfer +— DATAFIFO:PART? <n_values> — Execute Final Transfer

Command Command

) ' .

(Exit Data Retrieval)

Figure 3-9. Controlling Reading Count

Chapter 3 Programming the HP E1415 for PID Control 89

Here’'s an example command sequence for Figure 3-9. It assumes that the
FIFO mode was set to BLOCK and that at least one algorithm is sending
values to the FIFO (a PIDB witHistory_mode set to 1).

following loop reads number of valuesin FIFO while algorithms executing

loop while "measuring" bit is true
SENS:DATA:FIFO:COUNT?

input n_values here
if n_values >= 16384

SENS:DATA:FIFO:PART? n_values

input read_data here

end if
end while loop

see STAT: OPER: COND bit 4
query for count of valuesin
FIFO

Set minimum bl ock si ze you want
to transfer

ask for n_values

Format depends on FORMat
cmd

following checks for values remaining in FIFO after "measuring” false

SENS:DATA:FIFO:COUNT?

input n_values here

if n_values
SENS:DATA:FIFO:PART? n_values
input read_data here

end if

query for values till in FIFO
if any values...

get remaining values from FIFO

Reading the Latest FIFO Values (FIFO mode OVER)

In this mode the FIFO always contains the latest values (up to the FIFO’s
capacity of 65,024 values) from running algorithms. In order to read these
values the algorithms must be stopped (use ABORT).This forms a record of
the algorithm'’s latest performance. In the OVERwrite mode, the FIFO can
not be read while it is accepting readings from algorithms. Algorithm
execution must be stopped before your application program reads the FIFO.

Here is an example command sequence you can use to read values from the
FIFO after algorithms are stopped (ABORT sent).

SENS:DATA:FIFO:COUNT?

input n_values here

if n_values
SENS:DATA:FIFO:PART? n_values
input read_data here

end of if

Modifying Running Algorithm Variables

Updating the
Algorithm Variables
and Coefficients

query count of valuesin FIFO

if any values...
Format of values set by FORMat
get remaining values from FIFO

The values sent with the ALG:SCALAR command are kept in the Update
Queue until an ALGorithm:UPDate command is received.

ALG:UPD

cause changes to take place

Updates are performed during phase 2 of the algorithm execution cycle (see
Figure 3-8 on page 86). The UPDate:WINDomum_updates> command

90 Programming the HP E1415 for PID Control

Chapter 3

Enabling and
Disabling
Algorithms

can be used to specify how many updates you need to perform during phase
2 (UPDATE phase) and assigns a constant window of timeto accomplish all
of the updates you will make. The default value for <num_updates> is 20.
Fewer updates (shorter window) means slightly faster loop execution times.
Each update takes approximately 1.4 pseconds.

To set the Update Window to allow 10 updates in phase 2:

ALG:UPD:WIND 10 allows slightly faster execution
than default of 20 updates

A way to synchronize variable updates with an external event isto send the
ALGorithm:UPDate:CHANnel 'dig_chan/bit>' command.

® The <dig_chan/bit> parameter specifies the digital channel/bit that
controls execution of the update operation.

When the ALG:UPD:CHAN command is received, the module checks the
current state of the digital bit. When the bit next changes state, pending
updates are made in the next UPDATE Phase.

ALG:UPD:CHAN ’1133.B0’ performupdateswhen bit zer o of
HP E1533 at channel 133
changes state

An agorithm is enabled by default when it is defined. However, the
ALG:STATe<alg_name>, ON | OFF command isprovided to allowsyou to
enable or disable algorithms. When an individual algorithm is enabled, it
will execute when the module is triggered. When disabled, the a gorithm
will not execute.

NOTE

The command ALG:STATE <alg_name>, ON | OFF does not take effect
until an ALG:UPDATE command isreceived. This alows you to send
multiple ALG:STATE commands and then synchronize their effect.

Setting Algorithm

Execution
Frequency

To enable ALG1 and ALG2, and disable ALG3 and AL G4:

ALG:STATE 'ALG1',ON enable algorithm ALG1

ALG:STATE 'ALG2',ON enable algorithm ALG2

ALG:STATE 'ALG3’,OFF disable algorithm ALG3

ALG:STATE 'ALG4’,OFF disable algorithm ALG4

ALG:UPDATE changes take effect at next
update phase

The ALGorithm:SCAN:RATIo 'alg_name>’,<num _trigs> command sets

the number of trigger events that must occur before the next execution of
algorithm <alg_name>. If you wanted PID 'ALG3’ to execute only every 20
triggers, you would send ALG:SCAN:RATIO 'ALG3',20, followed by an
ALG:UPDATE command. 'ALG3’ would then execute on the first trigger
after INIT, then the 21st, then the 41st, etc. This can be useful to adjust the

Chapter 3

Programming the HP E1415 for PID Control 91

responsetime of acontrol algorithm relativeto others. The* RST default for
al algorithms is to execute on every trigger event.

Example Command Sequence

This example command sequence puts together all of the steps discussed so
far in this chapter.

*RST Reset the module
Setting up Signal Conditioning (only for programmable SCPs)
INPUT:FILTER:FREQUENCY 2,(@116:119)
INPUT:GAIN 64,(@116:119)
INPUT:GAIN 8,(@120:123)
set up digital channel characteristics
INPUT:POLARITY NORM,(@125) (*RST default)
OUTPUT:POLARITY NORM,(@124) (*RST default)
OUTPUT:TYPE ACTIVE,(@124)
link channels to EU conversions (measurement functions)
SENSE:FUNCTION:VOLTAGE AUTO,(@100:107) (*RST default)
SENSE:REFERENCE THER,5000,AUTO,(@108)
SENSE:FUNCTION:TEMPERATURE TC,T,AUTO,(@109:123)
SENSE:REFERENCE:CHANNELS (@108),(@109:123)
configure digital output channel for "alarm channel"
SOURCE:FUNCTION:CONDITION (@132)
execute channel calibration

*CAL? can take several minutes
Configure the Trigger System
ARM:SOURCE IMMEDIATE (*RST default)
TRIGGER:COUNT INF (*RST default)
TRIGGER:TIMER .010 (*RST default)
TRIGGER:SOURCE TIMER (*RST default)
specify data format
FORMAT ASC,7 (*RST default)
select FIFO mode
SENSE:DATA:FIFO:MODE BLOCK may read FIFO while running

Define PID algorithm

ALG:DEFINE 'ALG1’,’PIDB(1100,0124,0132.B0)’
Pre-set PID coefficients

ALG:SCAL 'ALG1'P_factor’,5

ALG:SCAL 'ALG1','l_factor’,0

ALG:SCAL 'ALG1','D_factor’,0
initiate trigger system (start algorithm)

INITIATE

retrieve PID data
SENSE:DATA:CVT? (@<element_list>)

A Quick-Start PID Algorithm Example

This example uses the "PIDB" algorithm to control a simulated process
provided by a capacitor, two resistors, and a diode. The object isto control
the voltage level in the capacitor. The example program iswritten in
C-SCPI. To save space, the program shown here does not include any error

92 Programming the HP E1415 for PID Control Chapter 3

trapping. The source file for this example does implement error trapping.

The source file is named "simp_pid.cs'. See Appendix G page 389 for

program listings.

Chn 0 HI Chn 8 HI
Chn 0 LO —— PIDA Algorithm | — Chn8LO
HP E1501 HP E1532
Direct Current
Input SCP Output SCP

- C1100 uF
R2 10K Ohm N
load -
+ R120 K Ohm CR1
Current Limit

Figure 3-10. Quick Start Example

/* C-SCPI Exanple programfor the E1415A Algorithm ¢ C osed Loop Controller

* file name "sinp_pid.cs"
*

* Thi s program exanpl e shows the use of the intrinsic function PIDB.

*/

/* Standard include files */
#i ncl ude <stdlib. h>

#i ncl ude <stdi o. h>

#i ncl ude <stddef. h>

#i ncl ude <nmat h. h>

[* Instrument control include files */
#i ncl ude <cscpi.h>/* CSCPl include file */

[* Declare constants */

#defi ne E1415_ADDR'vxi, 208"/* The C-SCPlI address of your E1415 */
| NST_DECL(el415, "E1415A", REd STER);/* E1415 */
/* Main program */
voi d mai n()
{
/* Main programlocal variable declarations */
char *al gorithm /* Algorithmstring */
i nt al g_num /* Al gorithm nunber being | oaded */
char string[333]; /* Holds error information */
i nt32 error; /* Holds error nunber */

I NST_STARTUP():/* Initialize the C SCPI

/* Open the E1415 device session with error checking */

routi nes */

| NST_OPEN(e1415, E1415_ADDR);/* Open the E1415 */

if (! el415) {/* Did it open? */

(void) fprintf(stderr, "Failed to open the E1415 at address %s\n",

Chapter 3 Programming the HP E1415 for PID Control

93

E1415_ADDR) ;
(void) fprintf(stderr, "C SCPl open error was %\ n", cscpi_open_error);
exit(1);

/* Check for startup errors */
I NST_QUERY(el1415,"syst:err?\n", "%, %&", &error, string);
if (error) {
(void) printf("syst:err %l, %\ n", error, string);
exit(1l);

[* Start froma known instrunent */
| NST_CLEAR(el1415); /* Selected device clear */
| NST_SEND(e1415, "*RST;*CLS\n");

/* Setup SCP functions */
| NST_SEND(e1415, "sens:func:volt (@16)\n"); /* Analog in volts */
I NST_SEND(e1415, "sour:func:cond (@41)\n"); /* Digital output */

/* Configure Trigger Subsystem and Data Fornat */

I NST_SEND(e1415, "trig:sour timer;:trig:timer .001\n");
| NST_SEND(e1415, "sanp:timer 10e-6\n"); /* default */
| NST_SEND(e1415, "formreal, 32\n");

/* Download algorithmw th in-1ine code */
INST_SEND(el1415,"alg:def 'algl’,’PIDB(1116,0100,0141.B0)"\n");

[* Preset Algorithm variables */

INST_SEND(el1415,"alg:scal 'algl’,’Setpoint’,%f\n", 3.0);
INST_SEND(el1415,"alg:scal 'algl’,’P_factor’,%f\n", 0.0001);
INST_SEND(el1415,"alg:scal 'algl’,’l_factor’,%f\n", 0.00025);
INST_SEND(el1415,"alg:upd\n");

[* Initiate Trigger System - start scanning and running algorithms */
INST_SEND(e1415,"init\n");

/* Alter run-time variables and Retrieve Data */
while(1) {

float32 setpoint = 0, process_info[4];

inti;

/* type in -100 to exit */
printf("Enter desired setpoint: ");
scanf("%f",&setpoint);
if (setpoint == -100.00) break;
INST_SEND(el1415,"alg:scal 'algl’,’Setpoint’,%f\n", setpoint);
INST_SEND(e1415,"alg:upd\n™);
for (i=0;i<10;i++){/*read CVT 10 times */
/* ALG1 has elments 10-13 in CVT */
INST_QUERY(e1415, "data:cvt? (@10:13)","%f",&process_info);
printf("Process variable: %f, %f, %f, %f\n",process_info[0],
process_info[1],process_info[2],process_info[3]);

94 Programming the HP E1415 for PID Control Chapter 3

PID Algorithm Tuning

Tuning control loopsisan extensive subject initself. A proper discussion of
loop tuning must be undertaken within the context of process and control
loop theory. With that in mind we would like to recommend to you a book
that covers this subject well: Fundamentals Of Process Control Theory, by
Paul W. Murrill, Instrument Society of America, Research Triangle Park,
NC, 1981, Second Edition 1991, ISBN 1-55617-297-4.

The HP E1415 Algorithmic Closed Loop Controller provides tuning
assistance in the form of the following loop control and monitoring features:

® Manual control mode
® Direct manipulation of variable valuesin both PIDA and PIDB.
® PIDB operating values available from CVT

® PIDB History Mode puts continuous sequence of operating valuesinto
FIFO

Using the Status System

The HP E1415's Status System allows you to quickly poll a single register
(the Status Byte) to see if any internal condition needs attention. Figure 3-11
shows that the three Status Groups (Operation Status, Questionable Data,
and the Standard Event Groups) and the Output Queue all send summary
information to the Status Byte. By this method the Status Byte can report
many more events than its eight bits would otherwise allow. Figure 3-12

shows the Status System in detail.

Questionable Data Group

Output
Queue

Status Byte

read with
\ . *STB?
group summary bits .

Operation Status Group

Standard Event Group

Figure 3-11. Simplified Status System Diagram

Chapter 3

Programming the HP E1415 for PID Control 95

Lost Calibration
Trigger Too Fast

FIFO Overflowed
Overvoltage

VME Memory Overflow
Setup Changed

QUESTIONABLE DATA GROUP

Rlrlr]le k]|

|

IEE

Bl

E:

]
[h
[
FEan

Al

I

6

i

Condition Filter

(real time)

Calibrating

Measuring

Scan Complete
SCP Trigger

FIFO Half Full
Algorithm Interrupt

STATus:QUEStionable:CONDition? (read only)
STATus:QUEStionable:NTR and STATus:QUEStionable:PTR (set filters)
STATus:QUEStionable:EVENt? (reads/clears register)

|— STATus:QUEStionable:ENABIe (sets mask)

Logical OR

Enable

(latched) (1=enable)

OPERATION STATUS GROUP

I TS

| 14
15

(

| FHIEH|F

]

T

T

Condition Filter

(real time)

STATus:OPERation:CONDition? (reads register)
STATus:OPERation:NTR and STATus:OPERation

|— STATus:OPERation:ENABle
—

Enable
(latched) (1=enable)

Logical OR

; Summary Bit

STATUS BYTE GROUP

Summary Enable
(real time) (1=enable)

Logical OR

K—Summary Bit

‘PTR (set filters)
1

STATus:OPERation:EVENt? (reads/clears register)
1

(sets mask)

f——RQS (SRQ) Z
‘OPR

— —
*SRE <mask_value>
*SRE?

Summary Bit

QUE - Questionable Data
MAV - Message Available
ESB - Standard Event
RQS - Request Service
OPR - Operation Status

% Summary Bit

STANDARD EVENT GROUP

Event Enable
(latched) (1=enable)
Operation Complete | Q
Request Control | 1
Query Error | 2 %
Device Dependent Error [3 =
— — Q
Execution Error | 4 2
—4 —]
Command Error | 5
User request| 6
Power-On| 7
— — —
*ESR? *ESE <mask_value>
*ESE?

Figure 3-12. HP E1415A Status System

96 Programming the HP E1415 for PID Control

Chapter 3

Status Bit Descriptions

Questionable Data Group

Bit Bit Value Event Name Description
8 256 Lost Calibration At *RST or Power-on Control Processor has found a checksum error in the
Calibration Constants. Read error(s) with SYST:ERR? command and re-calibrate
areas that lost constants.
9 512 Trigger Too Fast Scan not complete when another trigger event received.
10 1024 FIFO Overflowed Attempt to store more than 65,024 values in FIFO.
11 2048 Overvoltage If the input protection jumper has not been cut, the input relays have been opened
(Detected on Input) and *RST is required to reset the module. Overvoltage will also generate an error.
12 4096 VME Memory The number of values taken exceeds VME memory space.
Overflow
13 8192 Setup Changed Channel Calibration in doubt because SCP setup may have changed since last
*CAL? or CAL:SETup command. (*RST always sets this bit.)
Operation Status Group
Bit Bit Value Event Name Description
0 1 Calibrating Set by CAL:TARE, and CAL:SETup. Cleared by CAL:TARE?, and CAL:SETup?.
Set while *CAL? executing, then cleared.
4 16 Measuring Set when instrument INITiated. Cleared when instrument returns to Trigger Idle
State.
8 256 Scan Complete Set when each pass through a Scan List is completed
9 512 SCP Trigger Reserved for future HP SCPs
10 1024 FIFO Half Full FIFO contains at least 32,768 values
11 2048 Algorithm Interrupt The interrupt() function was called in an executing algorithm
Standard Event Group
Bit Bit Value Event Name Description
0 1 Operation Complete *OPC command executed and instrument has completed all pending operations.
1 2 Request Control Not used by HP E1415
2 4 Query Error Attempting to read empty output queue or output data lost.
3 8 Device Dependent Error A device dependent error occurred. See Appendix B page 335.
4 16 Execution Error Parameter out of range! or instrument cannot execute a proper command because
it would conflict with another instrument setting.
5 32 Command Error Unrecognized command or improper parameter count or type.
64 User Request Not used by HP E1415
128 Power-On Power has been applied to the instrument

Chapter 3

Programming the HP E1415 for PID Control 97

Enabling Events t0 Thereare two sets of registersthat individual status conditions must pass
; through before that condition can be recorded in a group’s Event Register.
be Reported in the These are the Transition Filter Registers and the Enable registers. They
Status Byte provide selectivity in recording and reporting module status conditions.

Configuring the Figure 3-12 shows that the Condition Register outputs are routed to the
Transition Filters input of the Negative Transition and Positive Transition Filter Registers. For
space reasons they are shown together but are controlled by individual SCPI
commands. Here is the truth table for the Transition Filter Registers:

Condition Reg Bit PTRansition Reg Bit NTRansition Reg Bit Event Reg Input
01 0 0 0
150 0 0 0
01 1 0 1
150 1 0 0
051 0 1 0
150 0 1 1
051 1 1 1
150 1 1 1

The Power-on default condition is: All Positive Transition Filter Register
bits set to one and all Negative Transition Filter Register bits set to 0. This
applies to both the Operation and Questionable Data Groups.

An Example using the Operation Group

Suppose that you wanted the module to report via the Status System when it
had completed executing *CAL?. The "Calibrating" bit (bit 0) in the
Operation Condition Register goes to 1 when *CAL? is executing and
returns to 0 when *CAL? is complete. In order to record only the negative
transition of this bit in the STAT:OPER:EVEN register you would send:

STAT:OPER:PTR 32766 All onesin Pos Trans Filter
register except bit 0=0
STAT:OPER:NTR 1 All zerosin Neg Trans Filter

register except bit 0=1

Now when *CAL? completes and Operation Condition Register bit zero
goes from 1 to 0, Operation Event Register bit zero will become a 1.

Configuring the Figure 3-12 you will note that each Status Group has an Enable Register.
Enable Registers These control whether or not the occurrence of an individual status condition
will be reported by the group’s summary bit in the Status Byte.

Questionable Data Group Examples

If you only wanted the "FIFO Overflowed" condition to be reported by the
QUE bit (bit 3) of the Status Byte, you would execute;

STAT:QUES:ENAB 1024 1024=decimal valuefor bit 10

98 Programming the HP E1415 for PID Control Chapter 3

If you wanted the "FIFO Overflowed" and " Setup Changed" conditionsto
be reported you would execute;

STAT:QUES:ENAB 9216 9216=decimal sum of values for
bits 10 and 13

Operation Status Group Examples

If you only wanted the"FIFO Half Full" condition to be reported by the OPR
bit (bit 7) of the Status Byte, you would execute;

STAT:OPER:ENAB 1024 1024=decimal value for bit 10

If you wanted the "FIFO Half Full" and " Scan Complete" conditionsto be
reported you would execute;

STAT:OPER:ENAB 1280 1280=decimal sum of valuesfor
bits 10 and 8

Standard Event Group Examples

If you only wanted the "Query Error", "Execution Error”, and "Command
Error" conditionsto be reported by the ESB bit (bit 5) of the Status Byte, you
would execute;

*ESE 52 52=decimal sum of values for
bits 2, 4, and 5

Reading the Status Tocheck if any enabled events have occurred in the status system, you first

Byt e read the Stat_us Byte using t_he *STB_? com_mand. If the Status Byteis all
zeros, there is no summary information being sent from any of the status

groups. If the Status Byteis other than zero, one or more enabl ed events have

occurred. You interpret the Status Byte bit values and take further action as

follows:

Bit 3 (QUE)

bit value 8, Read the Questionable Data Group’s Event Register
using the STAT:QUES:EVENT? command. This will
return bit values for events which have occurred in this
group. After reading, the Event Register is cleared.
Note that bits in this group indicate error conditions. If
bit 8, 9 or 10 is set, error messages will be found in the
Error Queue. If bit 7 is set, error messages will be in the
error queue following the next *RST or cycling of
power. Use the SYST:ERR? command to read the
error(s).

Bit 4 (MAV)

bit value 16, There is a message available in the Output Queue. You
should execute the appropriate query command.

Chapter 3 Programming the HP E1415 for PID Control 99

Bit 5 (ESB)

bit value 32,4 Read the Standard Event Group’s Event Register using
the *ESR? command. This will return bit values for
events which have occurred in this group. After
reading, this status register is cleared.

Note that bits 2 through 5 in this group indicate error
conditions. If any of these bits are set, error messages
will be found in the Error Queue. Use the SYST:ERR?
command to read these.

Bit 7 (OPR)

bit value 128;; Read the Operation Status Group’s Event Register
using the STAT:OPER:EVENT? command. This will
return bit values for events which have occurred in this
group. After reading, the Event Register is cleared.

Clearing the Enable To clear the Enable Registers execute:

RegISteFS STAT:PRESET for Operation Status and
Questionable Data Groups
*ESE 0 for the Sandard Event Group
*SRE 0 for the Satus Byte Group

The Status Byte TheEnableRegister for the Status Byte Group hasaspecial purpose. Notice
J in Figure 3-12 how the Status Byte Summary bit wraps back around to the
Grou p's Enable Status Byte. The summary bit setsthe RQS (request service) bit in the Status
Reg ISter Byte. Using this Summary bit (and those from the other status groups) you
can poll the Status Byte and check the RQS bit to determine if there are any
status conditions which need attention. In this way the RQS bit is like the
HP-IB’s SRQ (Service Request) line. The difference is that while executing
an HP-IB serial poll (SPOLL) releases the SRQ line, executing the *STB?
command does not clear the RQS bit in the Status Byte. You must read the
Event Register of the group whao'’s summary bit is causing the RQS.

Readi ng Status You may want to directly poll status groups for instrument status rather than
Groups Directly poll the Status Byte for summary information.

Reading Event Registers The Questionable Data, Operation Status, and Standard Event Groups all
have Event Registers. These Registers log the occurrence of even temporary
status conditions. When read, these registers return the sum of the decimal
values for the condition bits set, then are cleared to make them ready to log
further events. The commands to read these Event Registers are:

STAT:QUES:EVENT? Questionable Data Group Event
Register

STAT:OPER:EVENT? Operation Status Group Event
Register

*ESR? Standard Event Group Event
Register

100 Programming the HP E1415 for PID Control Chapter 3

Clearing Event Registers

Reading Condition

Registers

To clear the Event Registers without reading them execute:

*CLS clears all group’s Event
Registers

The Questionable Data and Operation Status Groups each have a Condition
Register. The Condition Register reflects the group’s status condition in
"real-time". These registers are not latched so transient events may be
missed when the register is read. The commands to read these registers are:

STAT:QUES:COND? Questionable Data Group
Condition Register
STAT:OPER:COND? Operation Satus Group

Condition Register

HP E1415 Background Operation

The HP E1415 inherently runs its algorithms and calibrations in the
background mode with no interaction required from the driver. All resources
needed to run the measurements are controlled by the on board Control
Processor (DSP).

The driver is required to setup the type of measurement to be run, modify
algorithm variables, and to unload data from the card after it appears in the
CVT or FIFO. Once the INIT[:IMM] command is given, the HP E1415 is
initiated and all functions of the trigger system and algorithm execution are
controlled by its on-board control processor. The driver returns to waiting
for user commands. No interrupts are required for the HP E1415 to complete
its measurement.

While the module is running algorithms, the driver can be queried for its
status, and data can be read from the FIFO and CVT. The ABORT command
may be given to force continuous execution to complete. Any changes to the
measurement setup will not be allowed until the TRIG:COUNT is reached,
or an ABORT command is given. Of course any commands or queries can
be given to other instruments while the HP E1415 is running algorithms.

Updating the Status System and VXIbus Interrupts

The driver needs to update the status system'’s information whenever the
status of the HP E1415 changes. This update is always done when the status
system is accessed, or when CALibrate, INITiate, or ABORt commands are
executed. Most of the bits in the OPER and QUES registers represent
conditions which can change while the HP E1415 is measuring (initiated).

In many circumstances it is sufficient to have the status system bits updated
the next time the status system is accessed, or the INIT or ABORt commands
are given. When it is desired to have the status system bits updated closer in
time to when the condition changes on the HP E1415, the HP E1415
interrupts can be used.

The HP E1415 can send VXI interrupts upon the following conditions:
® Trigger too Fast condition is detected. Trigger comes prior to trigger

Chapter 3

Programming the HP E1415 for PID Control 101

system being ready to receive trigger.

® FIFO overflowed. In either FIFO mode, data was received after the
FIFO wasfull.

® QOvervoltage detection on input. If the input protection jumper has not
been cut, theinput relays have all been opened, and a* RST isrequired
to reset the HP E1415.

® Scan complete. The HP E1415 hasfinished a scan list.

® SCPtrigger. A trigger was received from an SCP,

® FIFO half full. The FIFO contains at least 32768 values.

® Measurement complete. The trigger system exited the "Wait-For-
Arm". This clears the Measuring bit in the OPER register.

® Algorithm executes an "interrupt()" statement.

These HP E1415 interrupts are not always enabled since, under some
circumstances, this could be detrimental to the users system operation. For
example, the Scan Complete, SCP triggers, FIFO half full, and

Measurement compl ete interrupts could come repetitively, at rates that

would cause the operating system to be swamped processing interrupts.

These conditions are dependent upon the user’s overall system design,
therefore the driver allows the user to decide which, if any, interrupts will be
enabled.

The way the user controls which interrupts will be enabled is via the *OPC,
STATUS:OPER/QUES:ENABLE, and STAT:PRESET commands.

Each of the interrupting conditions listed above, has a corresponding bit in
the QUES or OPER registers. If that bit is enabled via the
STATus:OPER/QUES:ENABIe command to be a part of the group
summary bit, it will also enable the HP E1415 interrupt for that condition. If
that bit is not enabled, the corresponding interrupt will be disabled.

Sending the STAT:PRESET will disable all the interrupts from the HP
E1415.

Sending the *OPC command will enable the measurement complete
interrupt. Once this interrupt is received and the OPC condition sent to the
status system, this interrupt will be disabled if it was not previously enabled
via the STATUS:OPER/QUES:ENABLE command.

The above description is always true for a downloaded driver. In the C-SCPI
driver, however, the interrupts will only be enabled if cscpi_overlap mode is
ON when the enable command is given. If cscpi_overlap is OFF, the user is
indicating they do not want interrupts to be enabled. Any subsequent
changes to cscpi_overlap will not change which interrupts are enabled. Only
sending *OPC or STAT:OPER/QUES:ENAB with cscpi_overlap ON will
enable interrupts.

In addition the user can enable or disable all interrupts via the SICL calls,
iintron() and iintroff().

102 Programming the HP E1415 for PID Control Chapter 3

Creating and Loading Custom EU Conversion Tables

Standard EU Operation

Custom EU Operation

The HP E1415 provides for loading custom EU conversion tables. This
alows you to have on-board conversion of transducers not otherwise
supported by the HP E1415.

The EU conversion tables built into the HP E1415 are stored in a"library”

in the module’s non-volatile Flash Memory. When you link a specific
channel to a standard EU conversion using the [SENSe:]FUNC:
command, the module copies that table from the library to a segment of

RAM allocated to the specified channel. When a single EU conversion is
specified for multiple channels, multiple copies of that conversion table are

put in RAM, one copy into each channel’'s Table RAM Segment. The
conversion table-per-channel arrangement allows higher speed scanning
since the table is already loaded and ready to use when the channel is
scanned.

Custom EU conversion tables are loaded directly into a channel’'s Table
RAM Segment using the DIAG:CUST:LIN and DIAG:CUST:PIEC
commands. The DIAG:CUST.. commands can specify multiple channels.

To "link" custom conversions to their tables you would execute the

[SENSe]FUNC:CUST <range>,(@<ch_list>) command. Unlike standard

EU conversions, the custom EU conversions are aready linked to their
channels (tables |oaded) before you execute the [SENSe:]FUNC:CUST
command but the command allows you to specify the A/D range for these
channels.

NOTE

The*RST command clears all channel Table RAM segments. Custom EU
conversion tables must be re-loaded using the DIAG:CUST:... commands.

Custom EU Tables

Custom Thermocouple

EU Conversions

TheHP E1415 usestwo typesof EU conversion tables, linear and piecewise.

The linear table describes the transducer’s response slope and offset
(y=mx+b). The piecewise conversion table gets its hame because it is
actually an approximation of the transducer’s response curve in the form of
512 linear segments whose end-points fall on the curve. Data points that fall
between the end-points are linearly interpolated. The built-in EU
conversions for thermistors, thermocouples, and RTDs use this type of table.

The HP E1415 can measure temperature using custom characterized
thermocouple wire of types E, J, K, N, R, S, and T. The custom EU table
generated for the individual batch of thermocouple wire is loaded to the
appropriate channels using the DIAG:CUST:PIEC command. Since
thermocouple EU conversion requires a "reference junction compensation"
of the raw thermocouple voltage, the custom EU table is linked to the
channel(s) using the command [SENSe:JFUNCtion:CUSTom:TCouple
<type>[,<range>],(@<ch_list>).

The <ype> parameter specifies the type of thermocouple wire so that the

Chapter 3

Programming the HP E1415 for PID Control 103

correct built-in table will be used for reference junction compensation.

Reference junction compensation is based on the reference junction

temperature at the time the custom channel is measured. For more

information see “Thermocouple Reference Temperature Compensation” on
page 68.

Custom Reference The HP E1415 can measure reference junction temperatures using custom
Temperature EU characterized RTDs and thermistors. The custom EU table generated for the
Conversions Individually characterized transducer is loaded to the appropriate channel(s)
using the DIAG:CUST:PIEC command. Since the EU conversion from this
custom EU table is to be considered the "reference junction temperature”,
the channel is linked to this EU table using the command
[SENSe:JFUNCtion:CUSTom:REFerencer&age>,](@<ch list>).

This command uses the custom EU conversion to generate the reference
junction temperature as explained in the section “Thermocouple Reference
Temperature Compensation” on page 68.

Creating Conversion Contact your Hewlett-Packard System Engineer for more information on
Tables Custum Engineering Unit Conversion for your application.

Loading Custom EU There is a specific location in the E1415’s memory for each channel’'s EU
Tables Conversion table. When standard EU conversions are specified, the E1415
loads these locations with EU conversion tables copied from its non-volatile
FLASH Memory. For Custom EU conversions you must load these table
values using either of two SCPI commands.

Loading Tables for Linear Conversions

The DIAGnostic:CUSTom:LINeartable range>,<table block>,
(@<ch_list>) command downloads a custom linear Engineering Unit
Conversion table to the HP E1415 for each channel specified.

® <table block>isablock of 8 bytesthat define 4, 16-hit values. SCPI
requires that <table_block> include the definite length block data
header. C-SCPI adds the header for you.

® <table range> specifies the range of input voltage that the table
covers (from -<table_range> to +<table _range>). The value you
specify must be within 5% of: .015625 | .03125|.0625|.125|.25| .5
1|/2]418|16|32]|64.

® <ch_list> specifies which channels will have this custom EU table
loaded.

Usage Example

Your program puts table constants into array table_block

DIAG:CUST:PIEC table _block,1,(@132:163) send table for chs 32-63 to
HP E1415

SENS:FUNC:CUST:PIEC 1,1,(@132:163) link custom EU with chs 32-63

104 Programming the HP E1415 for PID Control Chapter 3

and set the 1V A/D range
INITiate then TRIGger module

Loading Tables for Non Linear Conversions

The DIAGnostic:CUSTom:PIECewise <table range>,<table block>,
(@<ch_list>) command downloads a custom piecewise Engineering Unit
Conversion table to the HP E1415 for each channel specified.

® <table block>isablock of 1,024 bytesthat define 512 16-bit values.
SCPI requires that <table_block> include the definite length block
data header. C-SCPI adds the header for you.

® <table range> specifies the range of input voltage that the table
covers (from -<table range> to +<table range>). The value you
specify must be within 5% of: .015625 | .03125|.0625|.125|.25| .5
1|2]418|16|32]|64.

® <ch_list> specifieswhich channels will have this custom EU table
loaded.

Usage Example

Your program puts table constants into array table_block
DIAG:CUST:PIEC table_block,1,(@124:131) send table for chs 24-31 to
HP E1415
SENS:FUNC:CUST:PIEC 1,1,(@124:131) link custom EU with chs 24-31
and set the 1V A/D range
INITiate then TRIGger module

Summary Thefollowing points describe the capabilities of custom EU conversion:

® A given channel only hasasingle active EU conversion table assigned
to it. Changing tables requires loading it with aDIAG:CUST....
command.

® The limit on the number of different custom EU tables that can be
loaded in an HP E1415 is the same as the number of channels.

® Custom tables can provide the same level of accuracy as the built-in
tables. In fact the built-in resistance function uses a linear conversion
table, and the built -in temperature functions use the piecewise
conversion table.

Chapter 3

Programming the HP E1415 for PID Control 105

Compensating for System Offsets

System Wiring Offsets

The HP E1415 can compensate for offsets in your system’s field wiring.
Apply shorts to channels at the Unit-Under-Test (UUT) end of your field
wiring, and then execute the CAL:TARE (@xlist>) command. The
instrument will measure the voltage at each channethinlist> and save
those values in RAM as channel Tare constants.

Important Note for
Thermocouples

® You must not use CAL:TARE on field wiring that is made up of
thermocouple wire. The voltage that a thermocouple wire pair
generates can not be removed by introducing a short anywhere
between its junction and its connection to an isothermal panel (either
the HP E1415's Terminal Module or a remote isothermal reference
block). Thermal voltage is generated along the entire length of a
thermocouple pair where there is any temperature gradient along that
length. To CAL:TARE thermocouple wire this way would introduce
an unwanted offset in the voltage/temperature relationship for that
thermocouple. If you inadvertently CAL: TARE a thermocouple wire
pair, see “Resetting CAL:TARE" on page 107.

® You should use CAL:TARE to compensate wiring offsets (copper
wire, not thermocouple wire) between the HP E1415 and a remote
thermocoupl e reference block. Disconnect the thermocouples and
introduce copper shorting wires between each channel's HI and LO,
then execute CAL:TARE for these channels.

Residual Sensor Offsets

Operation

To remove offsets like those in an unstrained strain gage bridge, execute the
CAL:TARE command on those channels. The module will then measure the
offsets and as in the wiring case above, remove these offsets from future
measurements. In the strain gage case, this "balances the bridge" so all
measurements have the initial unstrained offset removed to allow the most
accurate high speed measurements possible.

After CAL:TARE <ch_list> measures and stores the offset voltages, it then
performs the equivalent of a *CAL? operation. This operation uses the Tare
constants to set a DAC which will remove each channel offset as "seen" by
the module’s A/D converter.

The absolute voltage level that CAL: TARE can remove is dependent on the
A/D range. CAL:TARE will choose the lowest range that can handle the
existing offset voltage. The range that CAL:TARE chooses will become the
lowest usable range (range floor) for that channel. For any channel that has
been "CAL:TAREd" Autorange will not go below that range floor and
selecting a manual range below the range floor will return an Overload value
(see the table “Maximum CAL:TARE Offsets” on page 107).

As an example assume that the system wiring to channel 0 generates a +0.1
Volt offset with 0 Volts (a short) applied at the UUT. Before CAL:TARE

106 Programming the HP E1415 for PID Control Chapter 3

the module would return areading of 0.1 Volt for channel 0. After
CAL:TARE (@100), themodulewill return areading of 0 Voltswith ashort
applied at the UUT and the system wiring offset will be removed from all
measurements of the signal to channel 0. Think of the signal applied to the
instrument’s channel input as theoss signal value. CAL:TARE removes
thetare portion leaving only theet signal value.

Because of settling times, especially on filtered channels, CAL:TARE can
take a number of minutes to execute.

The tare calibration constants created during CAL:TARE are stored in and
are usable from the instrument's RAM. If you want the Tare constants to be
stored in non-volatile Flash Memory you can execute the

CAL:STORE TARE command.

NOTE

The HP E1415's Flash Memory has a finite lifetime of approximately ten
thousand write cycles (unlimited read cycles). While executing CAL:STOR
once every day would not exceed the lifetime of the Flash Memory for
approximately 27 years, an application that stored constants many times
each day would unnecessarily shorten the Flash Memory’s lifetime.

Resetting CAL:TARE

Special

Considerations

Maximum Tare
Capability

Changing Gains or

Filters

If you wish to "undo" the CAL:TARE operation, you can execute
CAL:TARE:RESet then *CAL?/CAL:SET. If current Tare calibration
constants have been stored in Flash Memory, execute CAL:TARE:RESET,
then CAL:STORE TARE.

Here are some things to keep in mind when using CAL:TARE.

The tare value that can be compensated for is dependent on the instrument
range and SCP channel gain settings. The following table lists these limits

Maximum CAL:TARE Offsets

A/D range Offset V Offset V Offset V Offset V

+V F.Scale Gain x1 Gain x8 Gain x16 Gain x64

16 3.2213 40104 .20009 .04970

.82101 10101 .05007 .01220

1 .23061 02721 .01317 .00297

.25 .07581 .00786 .00349 .00055
.0625 .03792 .00312 .00112 n/a

If you decide to change a channel’'s SCP setup after a CAL: TARE operation
you must perform a *CAL? operation to generate new DAC constants and
reset the "range floor" for the stored Tare value. You must also consider the
tare capability of the range/gain setup you are changing to. For instance if
the actual offset presentis 0.6 Volts and was "Tared" for a 4 Volt range/Gain

Chapter 3

Programming the HP E1415 for PID Control 107

x1 setup, moving to a1 Volt range/Gain x1 setup will return Overload
valuesfor that channel sincethe 1 Volt rangeis below the range floor as set
by CAL:TARE. See Table 6-1 on page 207 for more on values returned for
Overload readings.

Unexpected Channel This can occur when your HP E1415’s Flash Memory contains CAL: TARE

Offsets or Overloads offset constants that are no longer appropriate for its current application.
Execute CAL:TARE:RESET then *CAL? to reset the tare constants in
RAM. Measure the affected channels again. If the problems go away, you
can now reset the tare constants in Flash memory by executing CAL:STORE
TARE.

Detecting Open Transducers

Most of the HP E1415's analog input SCPs provide a method to detect open
transducers. When Open Transducer Detect (OTD) is enabled, the SCP
injects a small current into the HIGH and LOW input of each channel. The
polarity of the current pulls the HIGH inputs toward +17 volts and the LOW
inputs towards -17 volts. If a transducer is open, measuring that channel will
return an over-voltage reading. OTD is available on a per SCP basis. All
eight channels of an SCP are enabled or disabled together. See Figure 3-13
for a simplified schematic diagram of the OTD circuit.

Signal Conditioning Plug-on

Signal Input } } Multiplexer
! !
! !
High | S>—o—"o— High
! !
| +17V |
! !
! !
! !
! !
| |
| |
! !
! !
! !
! !
! !
! !
! !
| |
! !
! !
! !
| |
} -17V }
! !
Low | FH>—o0"o— Low
! !
! !

Figure 3-13. Simplified Open Transducer Detect Circuit

108 Programming the HP E1415 for PID Control Chapter 3

NOTES

1. When OTD is enabled, the inputs have up to 0.2uA injected into
them. If this current will adversely affect your measurement, but you
still want to check for open transducers, you can enable OTD, run
your agorithms, check analog input variables for measurement
values that indicate an open transducer, then disable OTD and run
your algorithms without it. The HP E1415’s accuracy specifications
apply only when OTD is off.

2. When a channel’'s SCP filtering is enabled, allow 15 seconds after
turning on OTD for the filters capacitors to charge before checking
for open transducers.

To enable or disable Open Transducer Detection, use the
DIAGnostic:OTDetect[:STATe] enable>, (@<ch_list>) command.

® The enable parameter can specify ON or OFF

® An SCPis addressed when the ch_list parameter specifies a channel
number contained on the SCP. The first channel on each SCPis:
0, 8, 16, 24, 32, 40, 48, and 56

To enable Open Transducer Detection on all channelson SCPs 1 and 3:
DIAG:OTD ON, (@100,116) Oison SCP 1 and 16 ison SCP3

To disable Open Transducer Detection on al channels on SCPs 1 and 3:
DIAG:OTD OFF, (@100,116)

More On Auto Ranging

There arerare circumstances where your input signal can be difficult for the
HP E1415 to auto range correctly. The module completes the range
selection based on your input signal about 6 psec before the actual
measurement is made on that channel. If during that period your signal
becomes greater than the selected range can handle, the module will return
an overflow reading (xINFinity).

To cure this problem, use the DIAGnostic:FLOoanrge>,(@<ch_list>)
command. Include the problem channel(s) ¢h {ist> and specify the

lowest range you want auto range to select for those channels. This will set
a range "floor" for these channels that auto range can't go below while still
allowing auto range to select higher ranges as necessary. If you need to
specify more than one range floor for different channel sets, execute the
DIAG:FLOOR command multiple times.

The DIAGnostic:FLOor:DUMP command sends the current range floor
settings for all 64 channels to the FIFO. Use DATA:FIFO:PART? 64 to read
these values.

The auto range floor settings remain until another DIAG:FLOOR command
changes them, or a *RST resets them to the lowest range for all channels.

Chapter 3

Programming the HP E1415 for PID Control 109

Settling Characteristics

Background

Checking for
Problems

Some sequences of input signals as determined by their order of appearance
in ascan list can be a challenge to measure accurately. This sectionis
intended to help you determine if your system presents any of these
problems and how best to eliminate them or reduce their effect.

While the HP E1415 can auto-range, measure, and convert areading to
engineering units as fast as once every 10 us, measuring ahigh level signal
followed by avery low level signal may require some extrasettlingtime. As

seen from the point of view of the HP E1415’s Analog-to-Digital converter
and its Range Amplifier, this situation is the most difficult to measure. For
example lets look at two consecutive channels; the first measures a power
supply at 15.5 volts, the next measures a thermocouple temperature. First the
input to the Range Amplifier is at 15.5 volts (near its maximum) with any
stray capacitances charged accordingly, then it immediately is switched to a
thermocouple channel and down-ranged to its .0625 volt range. On this
range, the resolution is now 1.Atolt per Least Significant Bit (LSB).
Because of this sensitivity, the time to discharge these stray capacitances
may have to be considered.

Thus far in the discussion, we’ve assumed that the low-level channel
measured after a high-level channel has presented a low impedance path to
discharge the A/D’s stray capacitances (path was the thermocouple wire).
The combination of a resistance measurement through an HP E1501 Direct
Input SCP presents a much higher impedance path. A very common
measurement like this would be the temperature of a thermistor. If measured
through a Direct Input SCP, the source impedance of the measurement is
essentially the value of the thermistor (the output impedance of the current
source is in the gigohm region). Even though this is a higher level
measurement than the previous example, the settling time can be even longer
due to the slower discharge of the stray capacitances. The simple answer
here is to always use an SCP that presents a low impedance buffered output
to the HP E1415’'s Range Amp and A/D. The HP E1503, 8, 9, 10, 12, and 14
through 17 SCPs all provide this capability.

The method we'll use to quickly determine if any of your system’s channels
needs more settling time is to simply apply some settling time to every
channel. Use this procedure:

1. First run your system to make a record of its current measurement
performance.

2. Then use the SAMPle:TIMer command to add a significant settling
delay to every measurement in the scan list. Take care that the sample
time multiplied by the number of channels in the scan list doesn't
exceed the time between triggers.

3. Now run your system and look primarily for low level channel
measurements (like thermocouples) who's DC value changes
somewhat. If you find channels that respond to this increase in sample

110 Programming the HP E1415 for PID Control Chapter 3

Fixing the Problem

Use Amplifier SCPs

period, you may also notice that these channels may return slightly
quieter measurements as well. The extra sample period reduces or
removes the affected channels coupling to the value of the channel
measured just before it.

4. If you see some improvement, increase the sample period again and
perform another test. When you increase the sample period and no
improvement is seen, you have found the maximum settling delay
that any single channel requires.

5. If the quality of the measurements does not respond to thisincreasein
sample period, then inadequate settling timeis not likely to be
causing measurement problems.

If your system scans fast enough with the increased sample period, your
problemissolved. Y our systemisonly running asfast asthe slowest channel

allows but if its fast enough that's OK. If on the other hand, getting quality
readings has slowed your scan rate too much, there are two other methods
that will, either separately or in combination, have your system making good
measurements as fast as possible.

Amplifier SCPs can remove the need to increase settling delays. How? Each
gain factor of 4 provided by the SCP amplifier allows the Range Amplifier
to be set one range higher and still provide the same measurement
resolution. Amplifier SCPs for the HP E1415 are available with gains of .5,
8, 16, 64, and 512. Lets return to our earlier example of a difficult
measurement where one channel is measuring 15.5 volts on the 16 volt
range, and the next a thermocouple on the .0625 range. If our thermocouple
channel is amplified through an SCP with a gain of 16, the Range Amplifier
can be set to the 1 volt range. On this range the A/D resolution drops to
around 3Juvolt per LSB so the stray capacitances discharging after the 15.5
volt measurement are now only one sixteenth as significant and thus reduce
any required settling delay. Of course for most thermocouple measurements
we can use a gain of 64 and set the Range Amplifier to the 4 volt range. At
this setting the A/D resolution for one LSB drops to abouth2#its and

further reduces or removes any need for additional settling delay. This
improvement is accomplished without any reduction of the overall
measurement resolution.

NOTE

Filter-amplifier SCPs can provide improvements in low-level signal
measurements that go beyond just settling delay reduction. Amplifying the
input signal at the SCP allows using less gain at the Range Amplifier (higher
range) for the same measurement resolution. Since the Range Amplifier has
to track signal level changes (from the multiplexer) at up to 100 KHz, its
bandwidth must be much higher than the bandwidth of individual
filter-amplifier SCP channels. Using higher SCP gain along with lower
Range Amplifier gain can significantly increase normal-mode noise
rejection.

Chapter 3

Programming the HP E1415 for PID Control 111

Adding Settling Delay for Thismethod adds settling time only to individua problem measurements as
Specific Channels opposed to the SAMPleTIMer command that introduces extratime for all

analog input channels. If you see problems on only afew channels, you can
usethe SENS:CHAN:SETTLING <num samples>,(@<ch _list>)
command to add extra settling time for just these problem channels. What
SENS.CHAN:SETTLING doesis instruct the HP E1415 to replace single
instances of a channel in the Scan List with multiple repeat instances of that
channdl if it is specified in (@<ch _list>). The number of repeatsis set by
<num_samples>.

Example:

Normal Scan List:
100, 101, 102, 103, 104

Scan List after SENS:CHAN:SETT 3,(@100,103)
100, 100, 100, 101, 102, 103, 103, 103, 104

When the algorithms are run, channels 0 and 3 will be sampled 3 times, and
the final value from each will be sent to the Channel Input Buffer. This
provides extra settling time while channels 1, 2, and 4 are measured in a
single sample period and their values also sent to the Channel Input Buffer.

112 Programming the HP E1415 for PID Control Chapter 3

Chapter 4

Creating and Running Custom Algorithms

Learning Hint

This chapter builds upon the "HP E1415 Programming Model" information
presented in Chapter 3. That information is common to PIDs, and to custom
algorithms. Y ou should read that section before moving on to this one.

About This Chapter

This chapter describes how to write custom algorithms that apply the

HP E1415’s measurement, calculation, and control resources. It describes
these resources and how you can access them with the HP E1415's
Algorithm Language. This manual assumes that you have programming
experience already. lIdedlly, you have programmed in the 'C’ language since
the HP E1415's Algorithm Language is based on 'C’. See Chapter 5 for a
description of the Algorithm Language. The contents of this chapter are:

 Describing the HP E1415 Closed Loop Controller. 114
e« What is a Custom Algorithm?. 114
e Overview of the Algorithm Language 114
e The Algorithm Execution Environment 115
e Accessing the E1415'SRESOUICES v i i it i i 117
-- Accessingl/OChannels 118
-- Defining and Accessing Global Variables. 119
-- Determining First Execution (First_loop). 119
-- Initializing Variables 120
-- Sending Datatothe CVTandFIFO 120
-- Setting a VXlbus Interrupt 121
-- Determining Your Algorithm's Identity (ALG_NUM). 121
-- Calling User Defined Functions 122
e Operating SeqUENCEttt 122
e Defining Custom Algorithms (ALG:DEF) 125
e A Very Simple First Algorithm. 128
* Modifying a Standard PID Algorithm. 129
* Algorithm to Algorithm Communication. 130
Communication Using Channel Identifiers. 130
Communication Using Global Variables. 131
e Non-Control Algorithms. 133
Data Acquisition Algorithm 133
Process Monitoring Algorithm 133
* Implementing Setpoint Profiles 134

Chapter 4

Creating and Running Custom Algorithms 113

Describing the HP E1415 Closed Loop Controller

The HP E1415 isreally a self contained data acquisition and control
platform in asingle C-size V X1bus module. Once configured for operation
and started using its SCPI command set, the module is controlled by the
agorithm(s) it isexecuting. It isthe algorithmsthat have exclusive accessto
acquired data from input channels, and it is the algorithms that generate
values that control the analog and digital output channels. It isthe

cal culation and decision making capability provided by its Algorithm
Language that makesthe HP E1415 a closed loop controller. By placing the
control "computer" (the agorithm) inside the data acquisition and control
instrument, the data acquisition, the control decision making, and the data
output phases are astightly coupled asthey can be. Thetimerequired for the
system to respond to changing input values is at most one execution of the
control algorithm. No data exchange to or from an external computer is
required in this cycle.

What is a Custom Algorithm?

Theonly thing that separatesthe HP E1415's standard PID algorithmsfrom
custom algorithmsis that the standard PIDs are "built-in". That is, they are
in the HP E1415's driver, and the driver can automatically insert your
channel referencesinto the code asit'sloading it. Otherwise thereis no
difference, in fact the standard PIDs are written in the same Algorithm
Language you will use to create your custom algorithms. The source code
for PIDA, PIDB, aswell athird algorithm "PIDC" are supplied with your
HP E1415 so you can use these as the basis for custom PID algorithms.

Overview of the Algorithm Language

As mentioned in the Introduction, the HP E1415's Algorithm Languageis
based on the ANSI 'C’ programming language. This section will present a
quick look at the Algorithm Language. The complete language referenceis
provided in Chapter 5.

Arithmetic Operators: add +, subtract -, multiply *, divide/
NOTE: See “Calling User Defined Functions” on page 122.

Assignment Operator: =

Comparison Functions: less thark, less than or equak, greater than
>, greater than or equak, equal to==, not equal td=

Boolean Functions: and& &, or||, not!

Variables: scalars of typestatic float, and single dimensioned arrays of
type static float limited to 1024 elements.

Constants:

32-bit decimal integeddd... whereD andd are decimal digits bud is
not zero. No decimal point or exponent specified.

32-bit octal integerQoo... where0 is a leading zero analis an octal digit.

114 Creating and Running Custom Algorithms Chapter 4

No decimal point or exponent specified.

32-bit hexadecimal integer; 0Xhhh... or Oxhhh... where h is a hex digit.
32-hit floating point; ddd., ddd.ddd, dddetdd, dddE+dd, ddd.dddedd,
or ddd.dddEdd where d is adecimal digit.

Flow Control: conditional construct if(){} else{}

Intrinsic Functions:

Return minimum; min(<expr1>,<expr2>)

Return maximum; max(<expr1>,<expr2>)

User defined function; <user_name>(<expr>)

Writevalueto CVT dement; writecvt(<expr>,<expr>)

Write value to FIFO buffer; writefifo(<expr>)

Write value to both CVT and FIFO; writeboth(<expr>,<expr>)

Example Language Hereare examples of some Algorithm Language elements assembled to
Us age show them used in context. Later sections will explain any unfamiliar
elements you see here;

Example 1;

[*** get input from channel 8, calculate output, check limits, output to ch 16 & 17 ***/

static float output_max = .020; /* 20 mA max output */

static float output_min = .004; /* 4 mA min output */

static float input_val, output_val; /* intermediate 1/O vars */

input val_ = 1108; /* get value from input buffer channel 8*/

output_val = 12.5 * input_val; [* calculate desired output */

if (output_val > output_max) /* check output greater than limit */
output_val = output_max; [* if so, output max limit */

else if(output_val < output_min) [* check output less than limit */
output_val = output_min; [* if so, output min limit */

0116 = output_val / 2; /* split output_val between two SCP */

0117 = output_val / 2; [* channels to get up to 20mA max */

Example 2;

[** same function as example 1 above but shows a different approach ***/

static float max_output = .020; /* 20 mA max output */

static float min_output = .004; /* 4 mA min output */

[* following lines input, limit output between min and max_output, and outputs. */
[* output is split to two current output channels wired in parallell to provide 20mA */
0116 = max(min_output, min(max_output, (12.5*1108) / 2));
0117 = max(min_output, min(max_output, (12.5*1108) / 2));

The Algorithm Execution Environment

This section describes the execution environment that the HP E1415
provides for your algorithms. Here we describe the relationship of your
agorithm to the main() function that calsit.

The Main Function All 'C language programs consist of one or more functions. A 'C’ program
must have afunction called main(). Inthe HP E1415, the main() functionis
usually generated automatically by the driver when you execute the INIT
command. The main() function executes each time the module istriggered,

Chapter 4 Creating and Running Custom Algorithms 115

and controls execution of your agorithm functions. See Figure 4-1 for a
partial listing of main().

How Your WhenthemoduleisINITiated, aset of control variables and afunction
; ; calling sequenceis created for all algorithmsyou have defined. The value of
Al g orithms Fit In variable "State n" is set with the ALGorithm:STATe command and
determines whether the algorithm will be called. The value of "Ratio_n" is
set with the AL Gorithm:SCAN:RATio command and determines how often
the algorithm will be called (relative to trigger events).

Sincethefunction-calling interface to your algorithmsisfixed inthe main()
function, the "header" of your algorithm function is also pre-defined. This
means that unlike standard 'C’ language programming, your algorithm
program (a function) need not (must not) include the function declaration
header, opening brace "{", and closing brace "}". Y ou only supply the
"body" of your function, the HP E1415's driver supplies the rest.

Think of the program spacein the HP E1415in theform of asourcefilewith
any global variablesfirst, then the main() function followed by as many
algorithms as you have defined. Of course what isreally contained in the
HP E1415's algorithm memory are executable codes that have been
translated from your downloaded source code. While not an exact
representation of the algorithm execution environment, Figure 4-1 shows
the relationship between anormal 'C’ program and two HP E1415
algorithms.

116 Creating and Running Custom Algorithms Chapter 4

Global variablesarea —

First_loop declared by
HP E1415'’s driver

Begin main() function
(built by HP E1415’s driver)

End main() function ———»

Begin algorithm "shells"
(built by HP E1415’s driver)

Your algorithms go here

/* GLOBALS you define with ALG:DEF GLOBALS... go here */

/* global variable First_loop equals 1 until all algorithms called */
static float First_loop; /* global value set to 1 at each INIT */
/ function main() /
[*The HP E1415 driver creates main() at INIT time. This example
shows a main created after 2 algorithms have been defined. */
main()
{
[Frxxxiiik declaration of variables local to main() **xxxxxx/
static float State_1, Ratio_1, Count_1; /* created if algl defined */
static float State_2, Ratio_2, Count_2; /* created if alg2 defined */

raxkiiirk thig section created if ALGL is defined ***¥xxx/

Count_1 = Count_1 - 1; /* Count_1 used for ALG:SCAN:RATIO */

if (Count_1 <=0){ /* test for ratio met (<=0 means execute)*/
Count_1 = Ratio_1; /*Count_1 = ALG:SCAN:RATIO setting */
if (State_1) alg1(); /*if ALG:STATE ALG1,0N, call algl */

}

[Frxxkiiik this section created if ALG2 is defined ******%/

Count_2 = Count_2 - 1; /* Count_2 used for ALG:SCAN:RATIO */

if (Count_2 <=0){ [* test for ratio met (<=0 means execute)*/
Count_2 = Ratio_2; /* Count_2 = ALG:SCAN:RATIO setting */
if (State_2) alg2(); /*if ALG:STATE ALG2,0N, call alg2 */

}

First_loop = 0; /*reset First_loop after last alg has been called */

}

I* end function main() /

ALG1() /* this function shell created by ALG:DEF 'ALG1".... */
{
const int ALG_NUM = 1, /* created by driver to ID this algorithm */

[rrRkkikkk Y gur algorithm code goes here *rxkkkkikx]

}

ALG2() /* this function shell created by ALG:DEF 'ALG2'.... */

{

const int ALG_NUM = 2; /* created by driver to ID this algorithm */

[Frxxkiiik Y our algorithm code goes here **xxxxkkix]

}

Figure 4-1. Source Listing of Function mai

Accessing the E1415’s Resources

This section describes how your algorithm accesses hardware and software
resources provided by the HP E1415. The following is alist of these

resources:

® |/O channels.

® Global variables defined before your algorithm is defined.

® The constant ALG_NUM which the HP E1415 makes available to
your algorithm. ALG_NUM = 1for ALG1, 2 for ALG2 etc.

® User defined functions defined with the ALG:FUNC:DEF command.

® The Current Vaue Table (CVT), and the data FIFO buffer (FIFO) to
output algorithm data to your application program.

® VVXlbus Interrupts.

Chapter 4

Creating and Running Custom Algorithms 117

Accessing I/O IntheAlgorithm Language, channels are referenced as pre-defined variable
Channels identifiers. The general channel identifier syntax is"lccc" for input channels

and "Occc" for output channels, where ccc is a channel number from 100
(channel 0) through 163 (channel 63). Like all HP E1415 variables, channel
identifier variables always contain 32-bit floating point values even when
the channel is part of adigital 1/0 SCP. If the digital I/O SCP has 8-bit
channels (like the HP E1533), the channel’s identifiers (Occc and Iccc) can
take on the values 0 through 255. To access individual bit values you may
append ".Bn" to the normal channel syntax; where n is the bit number (0
through 7). If the Digital 1/0 SCP has single-bit channels (like the
HP E1534), its channel identifiers can only take on the values 0 and 1.

Examples:

0100 =1, assign valueto output chan 0 on
HP E1534.

Inp_val = 1108; from8-bit channel on HP E1533
Inp_val will be0. to 255.

Bit_4 = 1109.B4; assign HP E1533 chan9bit4to
variable Bit_4

Output Channels

Output channels can appear on either or both sides of an assignment
operator. They can appear anywhere other variables can appear. Examples:

0100 = 12.5; send value to output channel
buffer element O
0108.B4 = ! 0108.B4; compliment value found in

output channel buffer element 8,
bit 4 each time algorithmis
executed.

writecvt(0116,350); send value of output channel 16
to CVT element 350

Input Channels
Input channel identifiers can only appear on the right side of assignment

operators. It doesn't make sense to output valuesto an input channel. Other
than that, they can appear anywhere other variables can appear. Examples:

dig_bit_value = 1108.B0; retrieve value from Input
Channel Buffer element 8, bit O

inp_value =1124; retrieve value from | nput
Channel Buffer element 24

0156 =4 * 1124; retrieve value from Input

Channel Buffer element 24,
multiply by 4 and send result to
Output Channel Buffer element
56

writefifo(1124); send value of input channel 24 to
FIFO buffer

Defined Input and Output Your algorithm "references’ channels. It can reference input or output
Channels channels. But, in order for these channelsto be available to your algorithm
they must be "defined". What we mean by "defined" isthat an SCP must be
installed, and an appropriate SOURce or SENSe :FUNCtion must explicitly

118 Creating and Running Custom Algorithms Chapter 4

Defining and

Accessing Global

Variables

(or implicitly, in the case of HP E1531& 32 SCPs) betied to the channels. If
your algorithm references an input channel identifier that is not configured
as an input channel, or an output channel identifier that is not configured as
an output channel, the driver will generate an error when your algorithm is
defined with ALG:DEF.

Global variables are those declared outside of both the main() function and
any algorithms (see Figure 4-1). A global variable can beread or changed by
any algorithm. To declare global variables you use the command:

ALG:DEF 'GLOBALS’,’<source_code>’

where <source_code> is Algorithm Language source limited to constructs
for declaring variables. It must not contain executable statements.
Examples:

declare single variable without assignment;

ALG:DEF 'GLOBALS’,'static float glob_scal_var;’
declare single variable with assignment;

ALG:DEF 'GLOBALS','static float glob_scal var = 22.53;’
declare one scalar variable and one array variable;

ALG:DEF 'GLOBALS','static float glob_scal var, glob_array var[12];

Y ou access global variables within your algorithm like any other variable.

glob_scal_var = P_factor * 1108

NOTES

1. All variables must be declared static float.

Array variables cannot be assigned a value when declared.

3. All variables declared within your algorithm are local to that
agorithm. If you locally declare avariable with the same identifier as
an existing global variable, your algorithm will access the local
variable only.

N

Determining

First Execution

(First_loop)

The HP E1415 alwaysdeclaresthe global variable First_loop. First_loopis
setto 1 eachtimelINIT isexecuted. After main() callsall enabled algorithms
it sets First_loop to 0. By testing First_loop, your algorithm can determine
if it isbeing called for the first time since an INITiate command was
received. Example:

static float scalar_var;
static float array_var [4];

/* assign constants to variables on first pass only */
if (First_loop)
{

scalar_var = 22.3;

array_var[0] = 0;

array_var[1] = 0;

array_var[2] = 1.2;

array_var[3] = 4;

Chapter 4

Creating and Running Custom Algorithms 119

Initializing Variables variableinitialization can be performed during three distinct HP E1415
operations.

1. When you define algorithms with the ALG:DEFINE command. A
declaration initialization statement is a command to the driver's
translator function and doesn't create an executable statement. The
value assigned during algorithm definition is not re-assigned when
the algorithm is run with the INIT command. Example statement:

static float my_variable = 22.95;/* tells translator to allocate space for this */
[* variable and initialize it to 22.95 */

2. Each time the algorithm executes. By placing an assignment
statement within your algorithm. Thiswill be executed each time the
agorithm is executed. Example statment.

my_variable = 22.95;/* reset variable to 22.95 every pass */

3. When the algorithm first executes after an INIT command. By using
the global variable First_loop your agorithm can distinguish the first
execution since an INIT command was sent. Example statement:

if(First_loop) my_variable = 22.95 /* reset variable only when INIT starts alg */

Sending Data to the TheCurrent Value Table (CVT) and FIFO data buffer provide
communication from your algorithm to your application program (running
CVT and FIFO in your V Xlbus controller).

Writing a CVT element

The CVT provides 502 addressable el ements where algorithm values can be
stored. To send avalueto aCVT element, you will execute the intrinsic
Algorithm Language statement writecvt(<expression>,<cvt_element>),

where <cvt_element> can take the value 10 through 511. Note that the

default PIDB algorithm will use certain CVT elements (see “History Mode”
on page 79). The following is an example algorithm statement:

writecvt(0124, 330); /* send output channel 24's value to CVT element 330 */

Each time your algorithm writes a value to a CVT element the previous
value in that element is overwritten.

Reading CVT elements

Your application program reads one or more CVT elements by executing the
SCPI comman@iSENSe]DATA:CVT? (@<element_list>), where
<element_list> specifies one or more individual elements and/or a range of
contiguous elements. The following example command will help to explain
the <lement_list> syntax.

DATA:CVT? (@10,20,30:33,40:43,330) Return e ements 10, 20, 30-33,
40-43. and element 330.

120 Creating and Running Custom Algorithms Chapter 4

Individual element numbers areisolated by commas. A contiguous range of
elementsis specified by: <starting element>colon<ending element>.

Writing values to the FIFO

TheFIFO, asthe nameimpliesisaFirst-In-First-Out buffer. It can buffer up
t0 65,024 values. This capability allowsyour algorithm to send acontinuous
stream of datavaluesrelated in time by their position in the buffer. Thiscan
be thought of as an electronic strip-chart recorder. Each value is sent to the
FIFO by executing the Algorithm Language intrinsic statement

writefifo(<expression>). The following in an example algorithm statement:

writefifo(O124); /* send output channel 24’s value to the FIFO */

Since you can determine the actual algorithm execution rate (see
“Programming the Trigger Timer” on page 84), the time relationship of
readings in the FIFO is very deterministic.

Reading values from the FIFO

For a discussion on reading values from the FIFO, see “Reading History
Mode Values From the FIFO” on page 88.

Writing values to the FIFO and CVT

The writeboth(<expression>,<cvt_element>) statement sends the value of
<expression> both to the FIFO and to awt_element>. Reading these
values is done the same way as mentionewfatefifo() andwritecvt().

Setting a VXIbus The algorithm language provides the funciiatrer r upt() to force a VXIbus
Interrupt interrupt. Wherinterrupt() is executed in your algorithm, a VXlbus
interrupt line (selected by the the SCPI command DIAG:INTR[:LINe]) is
asserted. The following example algorithm code tests an input channel value
and sets an interrupt if it is higher or lower than set limits.

static float upper_limit = 1.2, lower_limit = 0.2;
if(1124 > upper_limit || 1124 < lower_limit) interrupt();

Determini ng Your When you define your algorithm with the ALG:DEF 'ALGnR',... command,
; J ; the E1415's driver make available to your algorithm the constant
Al go rithm’s Id entity ALG_NUM. ALG_NUM has the value from "ALGnN". For instance, if you
(ALG_NUM) defined an algorithm withatg_name> equal to "ALG3", then ALG_NUM
within that algorithm would have the value 3.

What can you do with this value? To give you an idea, the standard PID
algorithm PIDB useALG_NUM to determinewhich CVT elementsit should
use to store values. Here's a short exampl e of the code used:

writecvt (inp_channel, (ALG_NUM * 10) + 0);
writecvt (Error, (ALG_NUM * 10) + 1);
writecvt (outp_channel, (ALG_NUM * 10) + 2);
writecvt (Status, (ALG_NUM * 10) + 3);

This code writes PID values into CVT elements 10 through 13 for ALG1,
CVT elements 20 through 23 for ALG2, CVT elements 30 through 33 for

Chapter 4 Creating and Running Custom Algorithms 121

ALG3 etc.

Using ALG_NUM allows you to write identical code that can take different
actions depending on the name it was given when defined.

Calling User Accessto user defined functions is provided to avoid complex equation
: : calculation within your algorithm. Essentially what is provided with the
Defined Functions HP E1415 is a method to pre-compute user function values outside of
agorithm execution and place these vauesin tables, one for each user
function. Each function table el ement containsaslope and offset to calcul ate
an mx+b over the interval (x isthe value you provide to the function). This
alows the DSPto linearly interpolate the table for a given input value and
return the function’s value much faster than if a transcendental function’s
eguation were arithmetically evaluated using a power series expansion.

User functions are defined by downloading function table values with the
ALG:FUNC:DEF command and can take any name that isavalid 'C’
identifier like 'haversing, 'sgr’, '1ogl10’ etc. To find out how to generate table
values from your function equation, see " Generating User Defined
Functions' in Appendix F page 367. For details on the ALG:FUNC:DEF
command, see page 176 in the Command Reference.

User defined functions are global in scope. A user function defined with
ALG:FUNC:DEF isavailable to al defined algorithms. Up to 32 functions
can be defined in the HP E1415. Y ou call your function with the syntax
<func_name>(<expression>). Example:

for user function pre-defined as square root with name 'sgrt’
0108 = sqrt(1100); /* channel 8 outputs square root of input channel Qs value */

NOTE A user function must be defined (ALG:FUNC:DEF) before any algorithmis
defined (ALG:DEF) that referencesiit.

A C-SCPI program that showsthe use of auser defined function is supplied
ontheexamplesdiscinfile"tri_sine.cs'. Appendix G page 389 for example
program listings.

Operating Sequence

This section explains another important factor in your algorithm’s execution
environment. Figure 4-2 showsthe same overall sequence of operationsthat
you saw in Chapter 3, but also includes a block diagram to show you which
parts of the HP E1415 are involved in each phase of the control sequence.

Overall Sequence Here, theimportant things to note about this diagram are:

® All algorithm referenced input channel values are stored in the

122 Creating and Running Custom Algorithms Chapter 4

Channel Input Buffer (Input Phase) BEFORE algorithms are executed
during the Calculate Phase.

® The execution of all defined algorithms (Calculate Phase) is complete
BEFORE output values from algorithms, stored in the Channel Output
Buffer, are used to update the output channel hardware during the
Output Phase.

In other words, algorithms don't actually read inputs at the time they
reference input channels, and they don't send values to outputs at the time
they reference output channels. Algorithms read channel values from an
input buffer, and write (and can read) output val uesto/from an output buffer.
Here are exampl e algorithm statements to describe operation:

inp_val = 1108;/* inp_val is assigned a value from input buffer element 8 */
0116 = 22.3;/* output buffer element 16 assigned the value 22.3 */
0125 = 0124;/* output buffer [24] is read and assigned to output buffer [25] */

A Common Sincethe buffered input, algorithm execution, buffered output sequenceis
Error to Avoid probably not amethod many are familiar with, a programming mistake
associated with it is easy to make. Once you seeit here, you won't do thisin
your programs. The following algorithm statements will help explain:

0124.B0 = 1;/* digital output bit on HP E1533 in SCP position 3 */
0124.B0=0;

Traditionally you expect the first of these two statements to set output
channel 24, bit 0 to adigital 1, then after the time it takes to execute the
second statement, the bit would return to adigital 0. Because both of these
statements are executed BEFORE any values are sent to the output
hardware, only the last statement has any effect. Even if these two
statements were in separate algorithms, the last one executed would
determine the output value. In this example the bit would never change. The
same applies to analog outputs.

Algorithm Thebuffered 1/0 sequence explained previously can be used to advantage.
; Multiple a gorithms can access the very same buffered channel input value
Execution Order without having to passthe valuein a parameter. Any agorithm can read and
use asitsinput, the value that any other algorithm has sent to the output
buffer. In order for these features to be of use you must know the order in
which your algorithms will be executed. When you define your algorithms
you give them one of 32 pre-defined algorithm names. These range from
'ALGL to ALG32'. Your algorithmswill execute in order of its name. For
instanceif youdefine’ALG5S', then’ALG2', then’ALGS8', andfinally 'ALGL,
when you run them they will execute in the order 'ALG1’,’ALG2’, 'ALG5S,
and 'ALGS8'. For more on input and output value sharing, see “Algorithm to
Algorithm Communication” on page 130.

Chapter 4 Creating and Running Custom Algorithms 123

PHASE 3
CALCULATE

Global Variables

PHASE 2
UPDATE

A

Update Queue
For Variables and

Algorithms

h

main() function

(driver generated)

Local Variables

A

Update Queue
For Variables and

ALG1

Algorithm
Code

PHASE 1
INPUT
State .
Frequency » —4—p _u__w%m_
Totalize 16 SCPs
Analog
—> Input q >
SCP
5 Input
. 3 Channel
. =3 Buffer
. E
b= (1100-1163)
Voltage Anal 2
Resistance nalog = N o
Tem — Input » 2 » AD EU >
p. < Conversion
Strain SCP 3
m
: s
o (&)
° <
O
Analog
——> Input > 64 Channel
SCP M Scan List
Voltage Analo
«r’ 9| ¢
Output [*
Current scp
Output
Channel
Buffer
(0100-0163)
State bigital
Pulses igital |
PWM |47 I/0
16
EM SCPs
PHASE 4
OUTPUT

Trigger ¢————— TRIG:TIMER ————— > Trigger

A

INPUT
UPDATE

CALCULATE

[&——— ALG:OUTP:DELAY

OUTPUT

4

A

Algorithms

P

Current Value Table

FIFO
Buffer

”|(elements 10 - 511)

FIFO

(64K Values)

PHASE 3
CALCULATE

VXIbus

Figure 4-2. Algorithm Operating Sequence Diagram

Chapter 4

124 Creating and Running Custom Algorithms

Defining Custom Algorithms (ALG:DEF)

ALG:DEFINE in the
Programming
Sequence

ALG:DEFINE’s
Three Data Formats

This section discusses how to use the ALG:DEFINE command to define
custom algorithms. Later sections will discuss "what to define”.

*RST erases al previously defined algorithms. Y ou must erase al
algorithms before you begin to re-define them (except in the special case
described in "Changing an Algorithm While it's Running" later in this
section).

For custom algorithms, the ALG:DEFINE '<alg_name>',’<source_code>’
command sends the algorithm’s source code to the HP E1415's driver for
tranglation to executable code. The <source code> parameter can besent in
one of three forms:

1. SCPI Quoted String: For short segments (single lines) of code,
enclose the code string within single (apostrophes), or double quotes.
Because of string length limitations within SCPI and some
programming platforms, we recommend that the quoted string length
not exceed a single program line. Example:

ALG:DEF 'ALGY' if(First_loop) 0108=0; 0108=0108+.01;’

1. SCPI Indefinite Length Block Program Data: This form terminates
the data transfer when it received an End I dentifier with the last data
byte. Use this form only when you are sure your controller platform
will include the End Identifier. If it is not included, the ALG:DEF
command will "swallow" whatever data follows the algorithm code.
The syntax for this parameter typeis:

#0<data byte(s)><null byte with End Identifier>
Example from "Quoted String" above:
ALG:DEF 'ALG1’#00108=1100;00 (where"" isanull byte)

2. SCPI Definite Length Block Program Data: For longer code
segments (like complete custom algorithms) this parameter works
well because it specifies the exact length of the data block that will be
transferred. The syntax for this parameter typeis:

#<non-zero digit><digit(s)><data byte(s)>

Where the value of <non-zero digit> is 1-9 and represents the number
of <digit(s)>. The value of <digit(s)> taken as a decimal integer
indicates the number of <data byte(s)> in the block. Example from
"Quoted String” above:

ALG:DEF 'ALG1'#2110108=1100;1 (where"O" isanull byte)

NOTE

For Block Program Data, the Algorithm Parser requiresthat thesource _code
dataend with anull (0) byte. Y ou must append the null byte to the end of the

Chapter 4

Creating and Running Custom Algorithms 125

block’s <data byte(s)>. For Definite Length Block Data you must account
for the null byte in the byte count <digit(s)> . If the null byteis not included
within the block, the error "Algorithm Block must contain termination \0™
will be generated.

Changing an
Algorithm While
it’'s Running

Defining an Algorithm for
Swapping

Indefinite Length Block Data Example

Retrieve algorithm source code from file and send to HP E1415 in indefinite
length format using VTL/VISA instrument 1/O libraries:

int byte_count, file_handle;

char source_buffer[8096], null = 0;

file_handle = open("<filename>", O_RDONLY + O_BINARY);
byte_count = read(file_handle, source_buffer, sizeof(source_buffer));
close(file_handle);

source_buffer[byte_count] = 0; /* null to terminate source buffer string */
ViPrintf(€1415, "ALG:DEF 'ALG8’,#0%s%c\n", source_buffer, null);

Definite Length Block Data Example

Retrieve source code from text file, determine length of file, create a
Definite Length Block header and send algorithm to HP E1415 using HP
VISA instrument I/O Libraries:

int byte_count, file_handle;

char header_string[12], source_buffer[8096], null = 0;

file_handle = open("<filename>", O_RDONLY+O_BINARY);

byte_count = read(file_handle, source_buffer, sizeof(source_buffer));

close(file_handle);

source_buffer[byte_count] = 0; /* null to terminate source buffer string */

sprintf(header_string, "%d", byte_count + 1); /* note byte_count+1for null byte */
sprintf(header_string, "%d%d", strlen(header_string), byte_count);
ViPrintf(e1415, "ALG:DEF 'ALG4’,#%s%s%c\n", header_string, source_buffer, null);

See the section "Running the Algorithm™ |ater in this chapter for more on
loading algorithms from files.

TheHP E1415 hasafeaturethat all owsyou to specify that agiven algorithm
can be swapped with another even whileit isexecuting. Thisisuseful if, for
instance, you needed to alter the function of an algorithm that is currently
controlling a process and you don't want to |eave that process uncontrolled.
In this case, when you define the original algorithm, you can enableit to be
swapped.

The ALG:DEF command has an optiona parameter that is used to enable
algorithm swapping. The command’s general form is:

ALG:DEF '<alg_name>'[,<swap_size>],'<source _code>’

Notethe parameter <swap_size>. With <swap_size>you specify theamount
of algorithm memory to allocate for algorithm <alg_name>. Make sureto
allocate enough space for the largest algorithm you expect to define for

126 Creating and Running Custom Algorithms Chapter 4

<alg_name>. Here is an example of defining an algorithm for swapping:

define ALG3 so it can be swapped with an algorithm as large as 1000 words
ALG:DEF 'ALG3',1000,#41698<1698char_alg_source>

NOTE

The number of characters (bytes) in an algorithm’s <source _code>
parameter is not well related to the amount of memory space the algorithm
requires. Remember this parameter contains the algorithm’s source code, not
the executable code it will be trandated into by the ALG:DEF command.

Y our algorithm’s source might contain extensive comments, none of which
will bein the executable algorithm code after it is translated.

How Does it Work?

Determining an
Algorithm’s Size

Welll use the example a gorithm definition above for this discussion. When
you specify avalue for <swap_size> at algorithm definition, the HP E1415
alocatestwo identical agorithm spaces for ALG3, each the size specified
by <swap_size> (in this example 1000 words). Thisis called a"double
buffer". Well just call these space A and space B. The algorithm is loaded
into ALG3's space A at first definition. Later, while algorithms are running
you can "replace" ALG3 by again executing

ALG:DEF ALG3,#42435<2435char_alg_source>

Notice that <swap_size> isnot (must not be) included thistime. This
ALG:DEF works like an Update Request. The HP E1415 translates and
downloads the new algorithm into ALG3's space B whilethe old ALG3 is
till running from space A. When the new algorithm has been completely
loaded into space B and an ALG:UPDATE command has been sent, the
HP E1415 simply switches to executing ALG3's new algorithm from space
B at the next Update Phase (see Figure 4-2. If you were to send yet another
ALG3, it would be loaded and executed from ALG3's space A.

In order to define an algorithm for swapping, you will need to know how
much algorithm memory to allocate for it or any of its replacements. Y ou
can query thisinformation from the HP E1415. Use the following sequence:

1. Define the algorithm without swapping enabled. Thiswill cause the
HP E1415 to allocate only the memory actually required by the
algorithm.

2. Executethe ALG:SIZE? <alg_name> command to query the amount
of memory allocated. You now know the minimum amount of
memory required for the algorithm.

3. Repeat 1 and 2 for each of the algorithms you want to be able to swap
with the original. From this you know the minimum amount of
memory required for the largest.

4. Execute*RST to erase all agorithms.

Chapter 4

Creating and Running Custom Algorithms 127

5. Re-define one of the algorithms with swapping enabled and specify
<swap_size> at least aslarge as the value from step 3 above (and
probably somewhat larger because as alternate algorithms declare
different variables, spaceis allocated for total of all variables
declared).

6. Swap each of the aternate algorithms for the one defined in step 5,
ending with the one you want to run now. Remember, you don't send
the <swap_size> parameter with these. If you don't get an "Algorithm
too big" error, then the value for <swap_size> in step 5 was large
enough.

7. Define any other algorithmsin the norma manner.

NOTES

1. Channelsreferenced by algorithms when they are defined, are only
placed in the channel list before INIT. The channel list cannot be
changed after INIT. If you re-define an algorithm (by swapping) after
INIT, and it references channels not already in the channel list, it will
not be able to access the newly referenced channels. No error
message will be generated. To make sure all required channelswill be
included in the channel list, define <alg_name> and re-define all
algorithmsthat will replace <alg_name> by swapping them before
you send INIT. Thisinsuresthat al channels referenced in these
agorithmswill be available after INIT.

2. Thedriver only calculates overall execution time for algorithms
defined before INIT. This calculation is used to set the default output
delay (same as executing ALG:OUTP.DELAY AUTO). If an
agorithm is swapped after INIT that take longer to execute than the
original, the output delay will behave asif set by ALG:OUTP:DEL
0, rather than AUTO (see ALG:OUTP:DEL command). Usethe same
procedure from note 1 to make sure the longest a gorithm execution
timeisused to set ALG:OUTP:DEL AUTO before INIT.

An example program file named "swap.cs' on the exampl es disc shows how
to swap algorithms while the module is running. See Appendix G page 389
for program listings.

A Very Simple First Algorithm

This section will show you how to create and download an algorithm that
simply sendsthe value of an input channel toaCVT element. It includes an
example application program that configures the HP E1415, downloads
(defines) the algorithm, starts and then communicates with the running
agorithm.

128 Creating and Running Custom Algorithms Chapter 4

Writing the
Algorithm

Running the
Algorithm

The most convenient method of creating your custom algorithm isto use
your text editor or word processor to input the source code. The following
agorithm source code is on the examples disc in afile called "mxplusb".

/* Example algorithm that calculates 4 Mx+B values upon
* signal that sync == 1. M and B terms set by application
* program.
*/
static float M, B, x, sync;
if (First_loop) sync =0;
if (sync==1){
writecvt(M*x+B, 10);
writecvt(-(M*x+B), 11);
writecvt((M*x+B)/2,12);
writecvt(2*(M*x+B),13);
sync = 2;

A C-SCPI example program "file_alg.cs' shows how to retrieve the
agorithm source file "mxplusb" and use it to define and execute an
agorithm. When you have compiled "file_alg.cs’, typefile_alg mxplusbto
run the example and load the algorithm.

Modifying a Standard PID Algorithm

PIDA with digital
On-Off Control

How the Standard PIDA

Operates

While the standard PID algorithms can provide excellent general closed
loop process control, there will be times when your process has specialized
reguirements that are not addressed by the default form of the HP E1415's
PID agorithms. In this section we show you how to copy and modify a
standard PID algorithm. Both of the HP E1415's standard PID algorithms
PIDA and PIDB are also available as source files supplied with your

HP E1415. Also included is a source file for aPIDC algorithm. PIDC has
morefeaturesthan PIDB but isnot pre-defined inthe HP E1415'sdriver like
PIDA and PIDB. It isonly available as a sourcefile.

The HP E1415's PID algorithms are written to supply control outputs
through anal og output SCPs. While it would not be an error to specify a
digital channel asthe PID control output, the PID algorithm aswritten would
not operate the digital channel as you would desire.

Thevalueyou writeto adigital output bitisevaluated asif it were aboolean
value. That is, if the value represents a boolean true, the digital output is set
toabinary 1. If the value represents a boolean fal se, the digital output is set
to abinary 0. The HP E1415's Algorithm Language (like 'C’") specifies that
avalue of 0isaboolean false (0), any other value is considered true (1).
With that in mind we'll analyze the operation of a standard PIDA with a
digital output asits control outpuit.

A PID isto control abath temperature at 140 degrees Fahrenheit. With the
Setpoint at 140 and the process variable (PV) reading 130, the value sent to
the output isapositive value which drivesthe digital output to 1 (heater on).

Chapter 4

Creating and Running Custom Algorithms 129

Modifying the
Standard PIDA

When the process value reading reaches 140 the "error term" would equal
zero so the value sent to the digital output would be O (heater off). Fine so
far, but as the bath temperature coasts even minutely above the setpoint, a
small negative value will be sent to the digital output which represents a
boolean true value. At this point the output will again be 1 (heater on) and
the bath temperature will continue go up rather than down. This processis
now out of control!

This behavior is easy to fix. We'll just modify the standard PIDA algorithm
source code (supplied with your HP E1415 in the file PIDA.C) and then
define it as a custom algorithm. Use the following steps.

1. Load the source file for the standard PIDA algorithm into your
favorite text editor.

2. Find the line of code near the end of PIDA that reads:
outchan = Error * P_factor + |_out + D_factor * (Error - Error_old)

and insert thisline below it:

if (outchan <= 0) outchan = 0; /* all value not positive are now zero */

3. going back to the beginning of the file change all occurrences of
"inchan" to the input channel specifier of your choice (e.g. 1100).

4. Asinstep 3, change all occurrences of "outchan" to the digital output
channel/bit identifier of your choice (e.g. 0108.B0).

5. Now save this algorithm source file as"ONOFFPID.C".

Algorithm to Algorithm Communication

Communication
Using Channel
Identifiers

Implementing
Multivariable Control

The ability for one algorithm to have access to values from another can be
very important particularly in more complex control situations. One of the
important features of the HP E1415 is that this communication can take
place entirely within the algorithms’ environment. Y our application program
is freed from having to retrieve values from one algorithm and then send
those val ues to another algorithm.

The value of al defined input and output channels can be read by any
agorithm. Hereis an example of inter-algorithm channel communication.

In this example, two PID algorithms each control part of a process and due
to the process dynamics are interactive. This situation can call for what is
known as a"decoupler". The job of the decoupler isto correct for the
"coupling" between these two process controllers. Figure 4-3 shows the two
PID controllersand how the de-coupler algorithm fitsinto the control loops.
As mentioned before, algorithm output statements don't write to the output

130 Creating and Running Custom Algorithms Chapter 4

SCP channelsbut areinstead buffered in the Output Channel Buffer until the
Output Phase occurs. This situation allows easy implementation of
decouplersbecauseit allows an algorithm following the two PIDsto inspect
their output values and make adjustments to them before they are sent to
output channels. The decoupler algorithm’s Decoupl_factor1 and

Decouple factor2 variables (assumes asimpleinteraction) arelocal and can
be independently set using ALG:SCALAR:

[* decoupler algorithm. (must follow the coupled algorithms in execution sequence) */
static float Decouple_factorl, Decouple_factor2;

0124 = 0124 + Decouple_factor2 * 0125;
0125 = 0125 + Decouple_factorl * 0124;

Decoupl_factorl

. \
Setpoint gc) PID Controller ALG1

ALG3
De-coupler |

+

' '
0125+ '0125

Decoupl_factor2

Setpoint ;O PID Controller ALG2
-

Process Interaction

Figure 4-3. Algorithm Communication with Channels

Communication
Using Global
Variables

Implementing Feed
Forward Control

A more traditional method of inter-algorithm communication uses global
variables. Global variables are defined using the AL G:DEF command in the
form:

ALG:DEF’'GLOBALS, <variable declaration_statements>’

Example of global declaration
ALG:DEF 'GLOBALS','static float cold_setpoint;’

In thisexampletwo a gorithmsmix hot and cold water suppliesin aratio that
resultsin atank being filled to adesired temperature. The temperature of the
make-up suppliesis assumed to be constant. Figure 4-4 shows the process
diagram.

Chapter 4

Creating and Running Custom Algorithms 131

GLOBAL
cold_setpoint
| 120°
Product

ALG2
Flow Controller

1109

55°
Cold Supply

flow transmitter

ALG1
Ratio Station

1108 @

180°
Hot Supply FT
7] flow transmitter

Figure 4-4. Inter-algorithm Communication with Globals

To set up the algorithms for this example:
1. Definethe global variable cold_setpoint

ALG:DEF 'GLOBALS,'static float cold_setpoint;’

2. Define the following algorithm language code as ALGL, theratio
station algorithm.

static float hot_flow, cold_hot_ratio;
static float cold_temp = 55, hot_temp = 180, product_temp = 120;

hot_flow =1108; /* get flow rate of cold supply */
[* following line calculates cold to hot ratio from supply and product temps */

cold_hot_ratio = (hot_temp - product_temp) / (cold_temp - product_temp);
cold_setpoint = hot_flow * cold_hot_ratio; /* output flow setpoint for ALG2 */

3. Moadify a PIDA agorithm so its setpoint variable is the global
variable cold_setpoint, itsinput channel is 1109, and its output
channel is 0116, and Define as ALG2, the cold supply flow
controller:

/* Modified PIDA Algorithm; comments stripped out, setpoint from global,
y inchan = 1109, outchan = 0116

[* the setpoint is not declared so it will be global */

static float P_factor = 1;

static float |_factor = 0;

static float D_factor = 0;

static float |_out;

static float Error;

static float Error_old;

132 Creating and Running Custom Algorithms Chapter 4

/* following line includes global setpoint var, and hard coded input chan */
Error = Cold_setpoint - 1109;
if (First_loop)

{
|_out = Error * |_factor;
Error_old = Error;
}
else /* not First trigger */
{
I_out = Error * |_factor + |_out; /* output channel hard coded here */
}

0116 = Error * P_factor + |_out + D_factor * (Error - Error_old);
Error_old = Error;

Non-Control Algorithms

Data Acquisition

Algorithm

Process Monitoring

Algorithm

The HP E1415's Algorithm Language includes intrinsic functions to write
valuestothe CVT, the FIFO, or both. Using these functions, you can create
algorithms that ssimply perform a data acquisition function. The following
example shows acquiring eight channels of ana og input from SCP position
0, and one channel (8 bits) of digital input from an HP E1533 in SCP
position 2. The results of the acquisition are placed in the CVT and FIFO.

[* Data acquisition to CVT and FIFO */

writeboth(1100, 330); /* channel 0 to FIFO, and CVT element 330 */
writeboth(1101, 331); /* channel 1 to FIFO, and CVT element 331 */
writeboth(1102, 332); /* channel 2 to FIFO, and CVT element 332 */
writeboth(1103, 333); /* channel 3 to FIFO, and CVT element 333 */
writeboth(1104, 334); /* channel 4 to FIFO, and CVT element 334 */
writeboth(1105, 335); /* channel 5 to FIFO, and CVT element 335 */
writeboth(1106, 336); /* channel 6 to FIFO, and CVT element 336 */
writeboth(1107, 337); /* channel 7 to FIFO, and CVT element 337 */
writeboth(1116, 338); /* channel 16 to FIFO, and CVT element 338 */

Using SENS.DATA:FIFO: ... and the SENS:DATA:CVT commands, your
application program can access the data.

Another function the HP E1415 performs well is monitoring input values
and testing them against pre-set limits. If an input value exceedsitslimit, the
algorithm can be written to supply an indication of this condition by
changing aCVT value, or even forcing a vV XIbus interrupt. The following
example shows acquiring one analog input value from channel 0, and one
HP E1533 digital channel from channel 16, and limit testing them.

/* Limit test inputs , send values to CVT, and force interrupt when exceeded */
static floatExceeded;

static floatMax_chan0, Min_chan0, Max_chanl, Min_chan1;

static floatMax_chan2, Min_chan2, Max_chan3, Min_chan3;

static floatMask_chan16;

if (First_loop) Exceeded = 0; /* initialize Exceeded on each INIT */

writecvt(1100, 330); /* write analog value to CVT */

Exceeded = ((1100 > Max_chan0) || (1100 < Min_chan0)); /* limit test analog */
writecvt(1101, 331); /* write analog value to CVT */

Exceeded = Exceeded + ((1101 > Max_chanl) || (1101 < Min_chanl));

Chapter 4

Creating and Running Custom Algorithms 133

writecvt(1102, 332); /* write analog value to CVT */

Exceeded = Exceeded + ((1102 > Max_chan2) || (1102 < Min_chan2));
writecvt(1103, 333); /* write analog value to CVT */

Exceeded = Exceeded + ((1103 > Max_chan3) || (1103 < Min_chan3));
writecvt(1116, 334); /* write 8-bit value to CVT */

Exceeded = Exceeded + (1116 != Mask_chanl6); /* limit test digital */

If (Exceeded) interrupt();

Implementing Setpoint Profiles

A setpoint profile is a sequence of setpoints you wish to input to a control
algorithm. A normal setpoint is either static or modified by operator input
to some desired value where it will then become static again. A setpoint
profile is used when you want to cycle a device under test through some
operating range, and the setpoint remains for some period of time before
changing. Theautomotiveindustry uses setpoint profilestotest their engines
and drive trains. That is, each new setpoint isasimulation of an operator
sequence that might normally be encountered.

A setpoint profile can either be calculated for each interval or pre-calculated
and placed into an array. If calculated, the algorithm is given a starting
setpoint and an ending setpoint. A function based upon time then calculates
each new desired setpoint until traversing the range to the end point. Some
might refer to this technique as setpoint ramping.

Most setpoint profiles are usually pre-cal culated by the application program
and downloaded into theinstrument performing the sequencing. Inthat case,
an array affords the best alternative for several reasons.

® Arrays can hold up to 1024 points.

® Arrays can be downloaded quickly while the algorithm is running.

® Time intervals can betied to trigger events and each N trigger events
can simply access the next element in the array.

® Real-time calculations of setpoint profiles by the algorithm itself
complicates the algorithm.

® The application program has better control over time spacing and the
complexity and range of the data. For example; succesive pointsinthe
array could be the same value just to keep the setpoint at that position
for extratime periods.

The following is an example program that sequences data from an array to
an Analog Output. There are some unique featuresillustrated here that you
can use:

® The application program can download new profiles while the
application program is running. The algorithm will continue to
sequence through the array until it reaches the end of the array. At
which time, it will set itsindex back to 0 and toggle a Digital Output
bit to create an update channel condition on a Digital Input. Then at
the next trigger event, the new array values will take effect before the
algorithm executes. Aslong asthe new array is download into
memory before the index reaches 1023, the switch to the new array

134 Creating and Running Custom Algorithms Chapter 4

elementswill take place. If the array is downloaded AFTER the index
reaches 1023, the same setpoint profile will be executed until index
reaches 1023 again.
® The application program can monitor the index value with
ALG:SCAL?"algl","index" so it can keep track of where the profile
sequenceis currently running. Theinterval can also be made shorter
or longer by changing the num_events variable.
SOUR:FUNC:COND (@141) make Digital 1/0 channel 141 a
digital output. The default
condition for 140 is digital
input.
define algorithm
ALG:DEF 'algl’;
static float setpoints[1024], index, hum_events, n;
if (First_loop) {
index = 0; /* array start point */
n = num_events;/* preset interval */
}
n=n-1; [* count trigger events */
if(n<=0){
0100 = setpoints[index]; /* output new value */
index =index + 1; /* increment index */
if (index >1023){ /*look for endpoint */
index = 0;
0140.B0 =10140.B0; /* toggle update bit */
}
n = num_events; /*resetinterval count */
y
ALG:SCAL "algl","num_events", 10 output change every 10msec
ALG:ARRAY "algl","setpoints",<block_data> set first profile
ALG:UPD force change
TRIG:TIMER .001 trigger event at 1msec
TRIG:SOUR TIMER trigger source timer
INIT start algorithm

Download new setpoint profile and new timer interval:
ALG:SCAL "algl","num_events", 20 output change every 20msec
ALG:ARRAY "algl","setpoints",<block data> set first profile
ALG:UPD:CHAN "1140.B0" change takes place with change
in bit 0 of O140.

This example program was configured using Digital Output and Digital
Inputs for the express reason that multiple E1415A’s may be used in a
system. Inthiscase, the E1415A toggling the digital bit would be the master
for the other E1415A's in the system. They all would be monitoring one of
their digital input channels to signal a change in setpoint profiles.

Chapter 4 Creating and Running Custom Algorithms 135

Notes:

136 Creating and Running Custom Algorithms Chapter 4

Chapter 5
Algorithm Language Reference

The HP E1415's Algorithm Language is alimited version of the 'C’
programming language. It is designed to provide the necessary control
constructs and algebraic operations to support standard PID aswell as
custom control algorithms. There are no loop constructs, multi-dimensional
arrays, or transcendental functions. Further, an algorithm must be
completely contained within a single function subprogram 'ALGnN’. The
agorithm can not call another user-written function subprogram.

It isimportant to note, that while the HP E1415's Algorithm Language has
limited set of intrinsic arithmetic operators, it also provides the capability
call special user defined functions"f(x)". An off-line program included with
your HP E1415 converts the functions you supply into piece-wise linear
interpolated tables and gives them names you choose. The HP E1415 can
extract function values from these tablesin under 18useconds, regardless of
the function’s original complexity. This method provides faster algorithm
execution by moving the complex math operations off-board. Appendix F
page 367 "Generating User Defined Functions"

This section assumes that you already program in some language. If you are
dready a’C’ language programmer, thisreference section, aswell as Chapter

4 “Creating and Running Custom Algorithms” is all you'll probably need to
create your algorithm. If you are not familiar with the C programming
language, you should study the "Program Structure and Syntax" section
before you begin to write your custom algorithms.

e Language Reference e 137
-- Standard Reserved Keywords 138
-- Special HP E1415 Reserved Keywords 138
- ldentifiers 138
-- Special IdentifiersforChannels 139
- OperatOrS. .« o o 139
-- Intrinsic Functions and Statements. 140
-- Program Flow Control. 140
DAt TYPES. . 140
-- Data Structures 141
- Bitfield Access 142

e Language Syntax Summary 143

* Program Structure and Syntax 147

Language Reference

This section provides a summary of reserved keywords, operators, data
types, constructs, intrinsic functions and statements.

Chapter 5 Algorithm Language Reference 137

Standard Reserved
Keywords

Thelist of reserved keywords is the same as ANSI 'C'. Y ou may hot create
your own variables using these names. Note that the keywords that are
shown underlined and bold are the only ANSI 'C’ keywords that are
implemented in the HP E1415.

auto double int struc
break else long switch
case enum register typeof
char extern return union
const float short unsigned
continue for signed void
default goto sizeof volatile
do if static while

NOTE

While al of the ANSI 'C’ keywords are reserved, only those keywords that
are shown in bold are actually implemented in the HP E1415.

Special HP E1415
Reserved Keywords

Identifiers

The HP E1415 implements some additional reserved keywords. Y ou may
not create variables using these names:

abs interrupt writeboth
Bn (n=0 through 9) max writecvt
Bnn (nn=10 through 15) min writefifo

Identifiers (variable names) are significant to 31 characters. They can
include alpha, numeric, and the underscore character " _". Names must begin
with an alpha character, or the underscore character.

Alpha abcdefghijklmnopqgrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ

Numeric:0123456789
Other:

138 Algorithm Language Reference Chapter 5

NOTE

Identifiers are case sensitive. The names My _array and my_array reference
different variables.

Special Identifiers
for Channels

Channel identifiers appear as variable identifiers within the algorithm and
have afixed, reserved syntax. The identifiers 1100 to 1163 specify input
channel numbers. The"1" must be upper case. They may only appear on the
right side of an assignment operator. The identifiers 0100 to 0163 specify
output channel numbers. The "O" must be upper case. They can appear on
either or both sides of the assignment operator.

NOTE

Trying to declare a variable with a channel identifier will generate an error.

Operators
Assignment Operator

Arithmetic Operators

Unary Operators

Comparison Operators

Logical Operators

Unary Logical Operator

The HP E1415's Algorithm Language supports the following operators.

= (assignment) example; ¢=1.2345

+ (addition) examples, c=a+b

- (subtraction) c=a-b

* (multiplication) c=a*b

/ (division) c=alb

- (unary minus) c=a+(-b)

+ (unary plus) c=a+ (+b)

== (isequa to) examples, a==

I= (isnot equa to) al=b

< (isless than) a (is greater than) a>b

<= (islessthan or equal to) a<=b

>= (isgreater than or equal to) a>=b

[I (or) examples, (a==Db)|l(a==c)
&& (and) (a==b) && (a==c)
! (not) example; b

Theresult of acomparison operationisaboolean value. Itistill atypefloat
but itsvalue is either 0 (zero) if false, or 1 (one) if true. Y ou may test any
variable with the if statement. A value of zero tests false, if any other value
it teststrue. For example:

* if my_var is other than O, increment count_var */
if(my_var) count_var=count_var+1,;

Chapter 5

Algorithm Language Reference 139

Intrinsic Functions Thefollowing functions and statements are provided in the HP E1415's
and Statements Algorithm Language:

Functions:

abs(expression) return absol ute value of expression
max(expressionl,expression2) return largest of the two expressions
min(expressionl,expression2) return smallest of the two expressions

Statements:

interrupt() sets VXI interrupt

writeboth(expression,cvt_loc) write expression result to FIFO
and CVT element specified.

writecvt(expression,cvt_loc) write expression resultto CVT

element specified.
writefifo(expression) write expression result to FIFO.

Prog ram Flow Program flow control islimited to the conditional execution construct using
Control if and else, and return. Looping inside an algorithm function is not
supported. The only "loop" is provided by repeatedly triggering the
HP E1415. Each trigger event (either external, or internal Trigger Timer)
executes the main() function which calls each defined and enabled
algorithm function. There is no goto statement.

Conditional Constructs The HP E1415 Algorithm Language provides the if-else construct in the
following general form:
if (expression) statementl else statement2
If expression evaluates to non-zero statementl is executed. If expression
evaluatesto zero, statement2 is executed. The el se clause with its associ ated
statement2 is optional . Statement1 and/or statement2 can be compound
statement. That is{ statement; statement; statement; ... }.

Exiting the Algorithm Thereturn statement allows terminating algorithm execution before
reaching the end by returning control to the main() function. Thereturn
statement can appear anywhere in your algorithm. Y ou are not required to
include aretur n statement to end an algorithm. The trand ator treatsthe end
of your algorithm as an implied return.

Data Types Thedatatypefor variablesisawaysstatic float. However decimal constant
values without a decimal point or exponent character (".", "E", or "€"), as
well as Hex and Octal constants are treated as 32-bit integer values. This
treatment of constantsis consistent with ANSI 'C’. To understand what this
can mean you must understand that not all arithmetic statements in your
agorithm are actually performed within the HP E1415’s DSP chip at
agorithm run-time. Where expressions can be simplified, the HP E1415's
trandlator (afunction of the driver invoked by ALG:DEF) performs the
arithmetic operations before downl oading the executable code to the
algorithm memory in the HP E1415. For example look at the statement;

a=5+8;

140 Algorithm Language Reference Chapter 5

When the HP E1415's tranglator receives this statement, it simplifiesit by
adding thetwo integer constants (5 and 8) and storing the sum of these asthe
float constant 13. At algorithm run-time, the float constant 13 is assighed to
the variable"a"'. No surprises so far. Now analyze this statement;

a=(3/4)*12

Again the trandator simplifies the expression by performing the integer
divide for 3/ 4. Thisresultsin the integer value 0 being multiplied by 12
which resultsin the float constant 0.0 being assigned to the variable "a" at
run-time. Thisis obviously not what you wanted but is exactly what your
agorithm instructed.

Y ou can avoid these subtle problems by specifically including a decimal
point in decimal constants where an integer operation is not what you want.
For example, if you had made either of the constantsin the division above a
float constant by including adecimal point, the translator would have
promoted the other constant to a float value and performed a float divide
operation resulting in the expected 0.75 * 12, or the value 8.0 So the
Statement;

a=(3./4)*12;

will result in the value float 8.0 being assigned to the variable "a".

The Static Modifier All HP E1415 variables, local or global, must be declared as static. An
example:

static float gain_var, integer_var, deriv_var; /*three vars declared */

In’C’, local variablesthat are not declared as static lose their values oncethe
function completes. The value of alocal static variable remains unchanged
between callsto your algorithm. Treating all variables thisway allows your
algorithm to "remember" its previous state. The static variableislocal in
scope, but otherwise behaves as a global variable. Also note that you may
not declare variables within a compound statement.

Data Structures TheHP E1415 Algorithm Language allows the following data structures:

® Simple variables of type float:
Declaration
static float simp_var, any_var,

Use
simp_var = 123.456;
any_var = -23.45;
Another_var = 1.23e-6;

Sorage
Each ssimple variable requires four 16-bit words of memory.

® Single-dimensioned arrays of type float with a maximum of 1024

Chapter 5 Algorithm Language Reference 141

eements:
Declaration
static float array_var [3];

Use
array_var [0] =0.1;
array_var [1]=1.2;
array_var [2] = 2.34;
array_var [3] = 5;

Sorage
Arrays are "double buffered”. This means that when you declare
an array, twice the space required for the array is allocated, plus
one more word as a buffer pointer. The memory required is:
words of memory = (8 * num_elements) + 1

This double buffered arrangement alows the ALG:ARRAY
command to download all elements of the array into the "B" buffer
while your algorithm is accessing values from the "A" buffer. Then
an ALG:UPDATE command will cause the buffer pointer word to
point to the newly loaded buffer between algorithm executions.

Bitfield Access TheHP E1415 implements bitfield syntax that allows you to manipulate
individual bit valueswithin avariable. This syntax is similar to what would
be done in'C’, but doesn't require a structure declaration. Bitfield syntax is
supported only for the lower 16 bits (bits 0-15) of simple (scalar) variables
and channdl identifiers.

Use
if(word_var.BO || word_var.B3) /* if either bit O or bit 3 true ... */
word_var.B15 =1, /* set bit 15 */

NOTES 1. Youdon't haveto declare a bitfield structure in order to useit. In the
Algorithm Language the bitfield structure is assumed to be applicable
to any simple variable including channel identifiers.

2. Unlike'C’, the Algorithm Language allows you both bit access and
"whole" access to the same variable. Example:
static float my_word_var;
my_word_var =255 /* set bits O through 7 */
my_word_var.B3 =0 /*clear bit 3 */

Declaration Initialization You may only initialize simple variables (not array members) in the
declaration statement:
static float my_var = 2;

142 Algorithm Language Reference Chapter 5

NOTE! Theinitiaization of the variable only occurs when the algorithm isfirst
defined with the ALG:DEF command. Thefirst time the algorithm is
executed (module INITed and triggered), thevalue will be asinitialized. But
when the moduleis stopped (ABORT command), and then re-INI Tiated, the
variable will not be re-initialized but will contain the value last assigned
during program execution. In order to initialize variables each time the
module is re-INITialized, see “Determining First Execution (First_loop)” on
page 119.

Global Variables To declare global variables you execute the SCPI command ALG:DEF
'GLOBALS',<program _string>. The program_string> can contain simple
variable and array variable declaration/initialization statements. The string
must not contain any executable source code.

Language Syntax Summary

This section documents the HP E1415's Algorithm Language elements.

Identifier:

first character is A-Z, a-z, or "_", optionally followed by characters; A-Z,

a-z, 0-9 or "_". Only the first 31 characters are significant. For example;
a, abc, al, al2,a 12, now_is_the_time, gainl

Decimal Constant:

first character is 0-9 or "."(decimal point). Remaining characters if
present are 0-9, a "."(one only), a single "E"or"e", optional "+" or "-"
0-9. For example; 0.32, 2, 123, 123.456, 1.23456e-2, 12.34E3

NOTE Decimal constants without a decimal point character are treated by the
translator as 32-bit integer values. See “Data Types” on page 140.

Hexadecimal Constant:

first characters are Ox or OX. Remaining characters are 0-9 and A-F or
a-f. No "." allowed.

Octal Constant:

first character is 0. Remaining characters are 0-7. If ".", "e", or "E" is

Chapter 5 Algorithm Language Reference 143

found, the number is assumed to be a Decimal Constant as above.

Primary-expression:

constant

(expression)
scalar-identifier
scalar-identifier.bitnumber
array-identifier[expression|
abs(expression)
max(expression,expression)
min(expression,expression)

Bit-number:

Bn where n=0-9
Bnn where nn=10-15

Unary-expression:

primary-expression
unary-operator unary-expression

Unary-operator:
+

!
Multiplicative-expression:

unary-expression
multiplicative-expression multiplicative-operator unary-expression

Multiplicative-operator:

*

/
Additive-expression:

multiplicative-expression
additive-expression additive-operator multiplicative-expression

Additive-operator:

+

144 Algorithm Language Reference Chapter 5

Relational-expression:

additive-expression
relational -expression relational-operator additive-expression

Relational-operator:

Equality-expression:

relational-expression
equality-expression equality-operator rel ational-expression

Equality-operator:

Logical-AND-expression:

equality-expression
logical-AND-expression & & equality-expression

Expression:

logical-AND-expression
expression || logical-AND-expression

Declarator:

identifier

identifier [integer-constant-expression]

NOTE: integer-constant expression in array identifier above must not
exceed 1023

Init-declarator:
declarator
declarator = constant-expression
NOTES: 1. May not initiaize array declarator.
2. Arrays limited to single dimension of 1024 maximum.

Init-declarator-list:

init-declarator
init-declarator-list , init-declarator

Chapter 5 Algorithm Language Reference 145

Declaration:
static float init-declarator-list;
Declarations:

declaration
declarations declaration

Intrinsic-statement:
interrupt ()
writefifo (expression)
writecvt (expression, constant-expression)
writeboth(expression , constant-expression)
exit (expression)

Expression-statement:
scalar-identifier = expression ;
scalar-identifier . bit-number = expression ;
array-identifier [integer-constant expression | = expression ;
intrinsic-statement ;

Selection-statement:

if (expression) statement
if (expression) statement else statement

Compound-statement:
{ statement-list }

{}
NOTE: Variable declaration not allowed in compound statement

Statement:
expression-statement
compound-statement
sel ection-statement

Statement-list:

statement
statement-list statement

Algorithm-definition:

declarations statement-list
statement-list

146 Algorithm Language Reference Chapter 5

Program Structure and Syntax

Declaring Variables

Assigning Values

In this section you will learn the portion of the 'C’ programming language
that is directly applicableto the HP E1415’ Algorithm Language. To do this
we will compare the 'C’ Algorithm Language elements with equivalent
BASIC language elements.

In BASIC you usually usethe DIM statement to name variablesand all ocate
space in memory for them. In the Algorithm Language you specify the
variable type and alist of variables:

BASIC C
DIM a, var, array(3) static float a, var, array[3];

Here we declared three variables. Two simple variables; a, and var, and a
single dimensioned array; array.

Comments:

* Note that the 'C’ language statement must be terminated with the

semicolon";".

* Although in the Algorithm Language al variables are of type float,
you must explicitly declare them as such.

® All variablesin your algorithm are static. This means that each time
your algorithm is executed, the variables "remember" their values
from the previous execution. The static modifier must appear in the
declaration.

® Array variables must have a single dimension. The array dimension
specifies the number of elements. The lower bound is always zero (0)
in the Algorithm Language. Therefore the variable My_array from
above hasthree elements; My _array [0] through My _array[2].

BASIC and 'C’ are the same here. In both languages you use the symbol "=
to assign avalue to asimple variable or an element of an array. The value
can come from a constant, another variable, or an expression. Examples:

a=12.345;

a= My var,;

a=My_array[2];

a=(My_array[1] +6.2) / My _var;

NOTE

In BASIC the assignment symbol "=" is also used as the comparison
operator "is equal to". For example; IF a=b THEN Asyou will read a
little further on, 'C’ uses a different symbol for this comparison.

Chapter 5

Algorithm Language Reference 147

The Operations
Symbols

The Arithmetic Operators

Unary Arithmetic
Operator

The Comparison
Operators

The Logical Operators

Conditiona
Execution

Many of the operation symbols are the same, and are used the same way as
those in BASIC. However there are differences, and they can cause
programming errors until you get used to them.

The arithmetic operators available to the HP E1415 are the same as those
equivalentsin BASIC:

+ (addition) - (subtraction)

* (multiplication) / (division)
Again same as BASIC:

- (unary minus) Examples: a=b+ (-0
+ (unary plus) a=c+ (+h)

Here there are some differences.

BASIC 'C Notes
= (isequal to) == Different (hard to remember)
<>or# (isnotequal to) I= Different but obvious
> (is greater than) > Same
< (isless than) > Same
>= (isgreater than or equal to) >= Same
<= (isless than or equal to) <= Same

A common 'C’ programming error for BASIC programmersisto
inadvertently use the assignment operator "=" instead of the comparison
operator "=="in an if statement. Fortunately, the HP E1415 will flag thisas
a Syntax Error when the algorithm is loaded.

There are three operators. They are very different from those in BASIC.

BASIC Examples 'C’ Examples

AND IFA=BANDB=C && if((a==b)&&(b==c))
OR IF A=B OR A=C [if((a==b)||(a==c))
NOT IFNOT B ! if (1h)

The HP E1415 Algorithm Language providesthe if - else construct for
conditional execution. Thefollowing figure comparesthe elements of the'C’
if - else construct with the BASIC if - then - else - end if construct. The
general form of theif - else construct is:

if(expression) statementl else statement?2
where statementl is executed if expression evaluatesto non-zero (true), and
statement2 is executed if expression evaluates to zero (false). Satementl
and/or statement2 can be compound statements. That is, multiple simple
statements within curly braces. See Figure 5-1

148 Algorithm Language Reference Chapter 5

BASIC Syntax

IF boolean_expression THEN
statement

IF boolean_expression THEN
statement
END IF

IF boolean_expression THEN
statement
statement
statement

END IF

IF boolean_expression THEN
statement
statement

ELSE
statement

END IF

Comments

Simplest form (used often)

Two-line form (not recommended; use
multiple line form instead)

'C’ Syntax

if(boolean_expression) statement,

if(boolean_expression)
statement,

if(boolean_expression){
Statement;
statement;
Statement;

Multiple line form (used often)

if(boolean_expression)

Multiple line form with else (used often) statement;

statement;

else

{

statement;

}

Figure 5-1. The if Statement 'C’ versus BASIC

———— BASIC Syntax

IF A<=0 THEN C=ABS(A)

IF A<>0 THEN

IF A<>B AND A<>C THEN
A=A*B
B=B+1
C=0

END IF

IF A=5 OR B=-5 THEN
C=ABS(C)
c=2/C

ELSE
C=A*B

END IF

Note that in BASIC the boolean_expression is delimited by the IF and the
THEN keywords. In 'C’ the parentheses delimit the expression. In'C’, the
")" istheimplied THEN. In BASIC the END IF keyword terminates a
multi-line IF. In’C’, theif isterminated at the end of the following statement
when no else clause is present, or at the end of the statement following the
else clause. Figure 5-2 shows examples of these forms:

<—— Examples > 'C’ Syntax

if(a <= 0) c=abs(a);
if(a = 0)

c=b/a;
if((a!=b) && (a!=c))

* by
+1;

oco®
nono
oo

}
f{f((a ==95) | (b==-5)

¢ = abs(c);
c=2/c¢

}

else

{
c=a*b;

}

Figure 5-2. Examples of 'C’ and BASIC if Statements

Chapter 5

Algorithm Language Reference 149

Notethat in'C’ "else" is part of the closest previous "if"statement. So the
example:
if(x)if(y)z=1;elsez=2;

executeslike: not like:
if(x) if(x {
if(y { if (y X
z=1; z=1;
} }
elsgf }
z=2; elsgf
} z=2;
} }

Comment Lines Probably the most important element of programming is the comment. In
older BASIC interpreters the comment line began with"REM" and ended at
the end-of-line character(s) (probably carriage return then linefeed). Later
BASICs allowed comments to also begin with various "shorthand"
characterssuch as"!", or "™. In al cases acomment ended when the
end-of-lineis encountered. In 'C’ and the Algorithm Language, comments
begin with the the two characters"/*" and continue until the two characters
"*[" are encountered. Examples:

* thislineis solely acomment line */

if (al=b)c=d+1; /* comment within acode line*/

I* This comment is composed of more than one line.
The comment can be any number of lines long and
terminates when the following two characters appear

*/

About the only character combination that is not allowed within acomment
is"*/", since this will terminate the comment.

The preceding discussion showed the differences between individu
Overall Program Th eding discussion showed the diff b individual
Structure statementsin BASIC and 'C’. Here we will show how the HP E1415's
Algorithm Language elements are arranged into a program.

Here is asimple example algorithm that shows most of the elements
discussed so far.

I* Example Algorithm to show language elements in the context of a complete
custom algorithm.

Program variables:

user_flag Set this value with the SCPI command ALG:SCALAR.
user_value Set this value with the SCPI command ALG:SCALAR.

Program Function:
Algorithm returns user_flag in CVT element 330 and another value in CVT element 331

each time the algorithm is executed.
When user_flag = 0, returns zero in CVT 331.

150 Algorithm Language Reference Chapter 5

When user_flag is positive, returns user_value * 2 in CVT 331
When user_flag is negative, returns user_value / 2 in CVT 331 and in FIFO

Use the SCPI command ALGorithm:SCALar followed by ALGorithm:UPDate to set
user_flag and user_value.

*/

static float user_flag;

[* Declaration statements (end with ;) */

static float user_value;

writecvt (user_flag,330); [* Always write user_flag in CVT (statement ends with ;) */

if (user_flag)

{

[* if statement (note no ;) */
[* brace opens compound statement */

if (user_flag > 0) writecvt (user_value * 2,331); /* one-line if statement (writecvt ends with ;) */

else

{

[* else immediately follows complete if-statement construct */
/* open compound statement for else clause */

writecvt (user_value / 2,331); /* each simple statement ends in ; (even within compound) */
writefifo (user_value); /* these two statements could combine with writeboth () */

}
}

[* close compound statement for else clause */
[* close compound statement for first if */

else writecvt (0,331);/* else clause goes with first if statement. Note single line else */

Where to go Next

If you have already read Chapter 3 “Programming the HP E1415 for PID
Control”, you should now go to Chapter 4 “Algorithm Language
Reference”. Itis very important to read Chapter 3 first since almost all of the
programming steps for PIDs apply to programming the HP E1415 to run
custom algorithms.

Chapter 5

Algorithm Language Reference 151

Notes:

152 Algorithm Language Reference Chapter 5

Chapter 6
HP E1415 Command Reference

Using This Chapter

This chapter describes the Standard Commandsfor Programmable | nstruments
(SCPI) command set and the | EEE-488.2 Common Commands for the HP E1415.

® Overdl CommandiIndex, 153
®* Command Fundamentals. 158
® SCPl CommandReference 163
® |EEE-488.2 Common Command Reference 287
® Command Quick Reference.o, 297

Overall Command Index

SCPI Commands

ABO R ... 164
ALGorithm[:EXPLicit]:ARRay '<alg_name>’,’<array_name>',<array_block>......... 166
ALGorithm[:EXPLicit:ARRay? '<alg_name>'/<array_name>" 167
ALGorithm[:EXPLicit]:DEFine '<alg_name>’,[<swap_size>,] '<source_code>". 167
ALGorithm[:EXPLicit]:SCALar '<alg_name>’,’<var_name>’<value> 171
ALGorithm[:EXPLicit:SCALar? '<alg_name>',’'<var_name>" 172
ALGorithm[:EXPLicit]:SCAN:RATio '<alg_name>',<num_trigs>................... 172
ALGorithm[:EXPLIicit:SCAN:RATI0O? '<alg_name>" 173
ALGorithm[:EXPLICIt]:SIZE? '<alg_name>" i 173
ALGorithm[:EXPLIcit][:STATe] '<alg_name>'<enable>.......................... 174
ALGorithm[:EXPLIcit][:STATe]? '<alg_name>’ e 175
ALGorithm[:EXPLICIt: TIME? ’'<alg_ name>". i 175
ALGorithm:FUNCtion:DEFine ’'<function_name>’,<range>,<offset>, <func_data>. 176
ALGorithm:OUTPuUt:DELay <delay> e 177
ALGOrthm:OUTPULDELAY? . . . ottt e e e e e 178
ALGorithm:UPDate[:.IMMediate] 178
ALGorithm:UPDate:CHANnel <dig_chan> 179
ALGorithm:UPDate:WINDow <num_updates> 180
ALGOrithm:UPDate:WINDOW? oot e e e e e 181
ARMEIMMEdIate]. 183
ARM:SOURCE <aIm_SOUIMCE> e e e et 183
ARM: SOURCE? . . . 184
CALibration:CONFigure:RESIStance i i e 186
CALlibration:CONFigure:VOLTage <range>,<zero fs> 187
Chapter 6 HP E1415 Command Reference 153

CALIDratiON: SETUD . . ot e e e 188

CALIDration: SETUDR? 188
CALIbration:STORE <tYPE>. . .ttt e e e 189
CALibration:TARE (@<Ch_list>).o e 190
CALIbration:TAREIRESEL. oot e e 191
CALIDration: TARE ? . ..o e 192
CALibration:VALue:RESistance <ref_ ohms> 192
CALibration:VALueVOLTage <ref volts>. i 193
CALIbration:ZERO? 194
DIAGnostic:CALibration:SETUp[:MODE] <mode> 195
DIAGnostic:CALibration:SETUp[:MODE]?. oo e e 196
DIAGnostic:CALibration:TARE[:OTDetect]:MODE <mode> 196
DIAGnostic:CALibration: TARE[:OTDetect]:MODE?.t 197
DIAGNOStiC:CHECKSUM?o e e 197
DIAGnhostic:CUSTom:LINear <table_range>,<table_block>, (@<ch list>) 197
DIAGnhostic:CUSTom:PIECewise <table_range>,<table_block>, (@<ch_list>)......... 198
DIAGnhostic:CUSTom:REFerence TEMPerature 199
DIAGnostic:FLOor[:CONFigure] <range>,(@<ch list>) 199
DIAGNostiC:FLOONDUMP . . .o e 200
DIAGNOStICIIEEE <mMOde>o e 200
DIAGNOSHICIIEEE?. . . .ot e e e e 201
DIAGnostic:INTerrupt[:LIN€] <intr_line>. i 201
DIAGRostiCINTerrupt[:LINE 2. . .o e e 201
DIAGnostic:OTDetect[:STATe] <enable>,(@<ch_list>)t 202
DIAGnostic:OTDetect[:STATe]? (@<channel>).o 202
DIAGNostic:QUERY:SCPREAD?<reg addr>ot 203
DIAGNOSI GV ERSION? .« .ot t e 203
FET G o 204
FORMat[:DATA] <format>[,<SIZE>] oottt 206
FORM A DA A 2 . oottt e e e e e e 207
INITiate[:IMMediate].o e e e 209
INPut:FILTer[:LPASs]:FREQuency <cutoff freg>,(@<ch list>) 210
INPut:FILTer[:LPASS]:FREQuency? (@<channel>) 211
INPut:FILTer[:LPASS][:STATe] <enable>,(@<ch list>) 211
INPUt:FILTer[LPASS][:STATe]? (@<channel>)........... ... i, 212
INPUt:GAIN <gain>,(@<ch list>)o e e e 212
INPUE:GAIN? (@<channel>) e 213
INPut:LOW <wvolt_type>,(@<ch list>) i 213
INPULLOW? (@<Channel>) e e e e e e 214
INPut:POLarity <mode>,<ch_list> e 214
INPUt:POLarity?<channel>. e 215
MEMory:VME:ADDRess <A24 address>t 216

154 HP E1415 Command Reference Chapter 6

MEMOry:VME ADDRESS? e 217

MEMoOry:VME:SIZE <mem _SiZe>. e e e 217
MEMOIY:VME:SIZE? . . .o e e 218
MEMory:VME:STATe <enable> e e e e 218
MEMOIY VME: STAT . . o e e e e 219
OUTPut: CURRent:AMPLitude <amplitude>,(@<ch_list>) 220
OUTPut: CURRent:AMPLitude? (@<channel>) 221
OUTPut: CURRent[:STATe] <enable>,(@<ch list>) oo, 222
OUTPut: CURRent[:STATE]? (@<channel>) 222
OUTPut:POLarity <select>,(@<ch_list>). ... e 223
OUTPUt:POLarity? (@<channel>)t 223
OUTPuUt:SHUNt <enable>,(@<ch_list>) e 223
OUTPUt:SHUNL? (@<channel>) e 224
OUTPULTTLTIg:SOURCE <trQ_SOUICE> . . ottt e et e e 224
OUTPULTTLTIg:SOURCE? . . . ot 225
OUTPUt: TTLTrg<n>:STATe <ttltrg_cntrl>. e 226
OUTPUL TTLTrg<N> i STATE] 2 . ottt e e e e e 226
OUTPUt:TYPE <salect>,(@<ch_list>) e 226
OUTPULTYPE?<channel> e 227
OUTPut:VOLTage:AMPLitude <amplitude>,(@<ch list>) 227
OUTPut:VOLTageeAMPLItude? (@<channel>) it 228
ROUTe SEQuUEeNCE: DEFINE? <type>ot e et et e 229
ROUTe SEQUeNCe POINIS? <ty pE> . ..o e e e e e 230
SAMPIETIMeEr <interval> e 231
SAMP e T M O 2. . e 232
[SENSe:]CHANNel:SETTIling <num_samples>,<ch_list> 234
[SENSe:]CHANNel:SETTIing?<channel>, 234
[SENSe:]DATA:CVTable? (@<element list>). ..., 235
[SENSe]DATA:CVTablERESELot e e 236
[SENSE] DATA:FIFOALL] 2. oot e e e 237
[SENSE]DATAFIFO:COUNL?. . ..o e e e 238
[SENSe] DATA:FIFO:COUNEHALF? . .. o e 238
[SENSe] DATA:FIFO: HALF 2. . o e 238
[SENSe]DATAFIFO:MODE <mode> oot e e e e e 239
[SENSE]DATA:FIFO:MODE? o e e e 240
[SENSe]DATA:FIFO:PART? <N ValUES>ottt et e 240
[SENSE]DATAFIFOIRESEL oot 241
[SENSe]FREQuency:APERture <gate time>,<ch list>........................... 241
[SENSe]FREQuency:APERture?<channel> 242
[SENSe]FUNCtion:CONDition <ch _list>0 i 242
[SENSe]FUNCtion:CUSTom [<range>,J(@<ch list>)t 243
[SENSe:]FUNCtion:CUSTom:REFerence [<range>,J(@<ch_list>) 244
[SENSe]FUNCtion:CUSTom:TCouple <type>,[<range>](@<ch list>).............. 245
[SENSe]FUNCtion:FREQuency <ch list>. i e 246

Chapter 6

HP E1415 Command Reference 155

[SENSe]FUNCtion:RESIstance <excite current>,[<range>,](@<ch_list>)............ 246

[SENSe]FUNCtion:STRain:FBENding [<range>,](@<ch list>) 248
[SENSe]FUNCtion: STRain:FBPoisson [<range>,J(@<ch list>) 248
[SENSe]FUNCtion:STRain:FPOisson [<range>,J(@<ch list>) 248
[SENSe]FUNCtion:STRain:HBENding [<range>,](@<ch list>) 248
[SENSe]FUNCtion:STRain:HPQisson [<range>,](@<ch list>) 248
[SENSe:]FUNCtion:STRain[:QUARter] [<range>,](@<ch_list>) 248
[SENSe]FUNCtion: TEM Perature <type>,<sub_type>,[<range>,|(@<ch_list>) 249
[SENSe]FUNCtion:TOTalize<ch list>. e 251
[SENSe:]FUNCtion:VOLTage[:DC] [<range>,]J(@<ch_list>)....................... 251
[SENSe]REFerence <type>,<sub type>,[<range>|(@<ch list>) 252
[SENSe:]REFerence: CHANnels (@<ref _channel>),(@<ch list>) 254
[SENSe]REFerence: TEMPerature <degrees C>. ..o 254
[SENSe]STRain:EXCitation <excite v>,(@<ch_list>) 255
[SENSe]STRain:EXCitation? (@<channel>)......... 256
[SENSe] STRain:GFACtor <gage factor>,(@<ch_list>), 256
[SENSe]STRain:GFACtor? (@<channel>) i 256
[SENSe:] STRain:POISson <poisson_ratio>,(@<ch_list>) 257
[SENSe]STRain:POISson? (@<channel>). i 257
[SENSe]STRain:UNSTrained <unstrained_v>,(@<ch list>) 258
[SENSe]STRain:UNSTrained? (@<channel>)., 258
[SENSe]TOTalize:RESet:MODE <select>,<ch list>. 259
[SENSe] TOTaizeRESet:MODE?<channel>t 259
SOURceFM[:STATe] <enable>,(@<ch_list>) 261
SOURCEFM:STATE? (@<Channel>). e 262
SOURce:FUNCtion[:SHAPe]:CONDition (@<ch_list>) ..., 262
SOURce:FUNCtion[:SHAPe]:PULSe (@<ch_list>). 262
SOURce:FUNCtion[:SHAPg]:SQUare (@<ch list>) ... 263
SOURce:PULM[:STATe] <enable>,(@<ch_list>). 263
SOURCcePULM[:STATE]? (@<channel>). 264
SOURce:PUL Se:PERiod <period>,(@<ch_list>) 264
SOURce:PULSePERiIod? (@<channel>)o i e 265
SOURce:PULSeWIDTh <pulse width>,(@<ch list>) 265
SOURCePULSEWIDTh? (@<Ch_liSt>) . ..o vooe e e e 265
STATUS.OPERation:CONDItiON? e 269
STATus:OPERation:ENABIe <enable mask> 270
STATUS. OPERALiON:ENABIE?. . . . e e e e e e e 271
STATUS.OPERation[:EVENL] 2. e 271
STATus.OPERation:NTRansition <transition_ mask>ccovuvn.... 271
STATUS.OPERation:NTRaNSItioN? e 272
STATus.OPERation:PTRansition <transition mask>.............................. 272
STATUS.OPERaLiON:PTRANSITION? e e 273
STATUS PRESELo 273
STATUS. QUESLoNable:CONDItION?t e e e e 274
STATus.QUEStionableENABIle <enable mask>. 275

156 HP E1415 Command Reference Chapter 6

STATUS. QUEStiONable ENABIE? e e et 275

STATUS.QUEStionabl e :EVENL] 2o e e 276
STATus.QUEStionable:NTRansition <transition mask>........................... 276
STATUs.QUEStionableNTRanSItion?.t e e e 277
STATus.QUEStionable:PTRansition <transition mask> 277
STATUs.QUEStionable:PTRaNSItioN?t et 278
SYSTem:CTYPe? (@<channel>) e 279
SY STEMIERROI? . . .o 279
SY STEMIVERSION? . . .o 280
TRIGQer:COUNL <trig COUNE>. i e e 283
TRIGQECOUNL? . . e e e e 283
TRIGQE:IMMEAIAE] oo 283
TRIGQESOURCE < SOUICE> . .. vttt ettt et et ettt et e 284
TRIGQENISOURCE? . . oottt ettt e e e e e e e e 285
TRIGger:TIMer[:PERiod] <trig_interval>. i 285
TRIGQer:TIME:PERIOA]? . . . oot e e e 286

Common Commands

AL 2 o 287
L S, ot 288
*DMC <name>,<cmd data™.ot 288
FEMC <enable> . ..o 288
FEM G . o 288
FESE MasK™ . . oo 288
B 2. o 289
B SR . ottt 289
FOM O QNaIME>. .ottt ettt e 289
DN 2 e 289
M 2 . o 290
O C L 290
O o 290
P C . 290
FRMC QNAME>. oottt e e 291
RS . et 291
FORE <MasK> . ..o e 292
O RE . ot 292
S 1= 292
TR G Lttt 292
S 551 293
N A L 296

Chapter 6

HP E1415 Command Reference 157

Command Fundamentals

Common
Command
Format

SCPI
Command
Format

Command
Separator

Abbreviated
Commands

Commandsare separated into two types. | EEE-488.2 Common Commands and SCPI
Commands. The SCPI command set for the HP E1415 is 1990 compatible

The IEEE-488.2 standard defines the Common commands that perform functions
like reset, self-test, status byte query, etc. Common commands are four or five
characters in length, aways begin with the asterisk character (*), and may include
oneor more parameters. The command keyword is separated from thefirst parameter
by a space character. Some examples of Common commands are:

*RST
*ESR 32
*STB?

The SCPI commands perform functions like configuring channels, setting up the
trigger system, and querying instrument states or retrieving data. A subsystem
command structure is a hierarchical structure that usually consists of atop level (or
root) command, one or more lower level commands, and their parameters. The
following example shows part of atypica subsystem:

MEMory
'VME
:ADDRess <A24 address>
:ADDRess?
:SIZE <mem_size>
:SIZE?

MEMory is the root command, :VME is the second level command, and
:ADDRess, and SIZE are third level commands.

A colon (:) always separates one command from the next lower level command as
shown below:

ROUTE:SEQUENCE:DEFINE?

Colons separate the root command from the second level command
(ROUTE:SEQUENCE) and the second level from the third level
(SEQUENCE:DEFINE?Y). If parameters are present, the first is separated from the
command by aspace character. Additional parameters are separated from each other
by acommas.

The command syntax shows most commands as a mixture of upper and lower case
letters. The upper caselettersindicate the abbreviated spelling for the command. For
shorter program lines, send the abbreviated form. For better program readability,
send the entire command. The instrument will accept either the abbreviated form or
the entire command.

For example, if the command syntax shows SEQuence, then SEQ and
SEQUENCE are both acceptable forms. Other forms of SEQuence, such as
SEQUEN or SEQU will generate an error. Y ou may use upper or lower caseletters.
Therefore, SEQUENCE, sequence, and SeQUENCe are al acceptable.

158 HP E1415 Command Reference Chapter 6

Implied
Commands

Variable
Command Syntax

Parameters

Implied commands are those which appear in square brackets ([]) in the command
syntax. (Note that the brackets are not part of the command, and are not sent to the
instrument.) Supposeyou send asecond level command but do not send the preceding
implied command. In this case, theinstrument assumes you intend to use theimplied
command and it respondsasif you had sentit. Examinethel NI Tiate subsystem shown
below:

INITiate
[:IMMediate]

The second level command :IMMediate is an implied command. To set the
instrument’strigger system to INIT:IMM, you can send either of the following
command statements:

INIT:IMM or INIT

Some commands will have what appears to be a variable syntax. As an example:
OUTPuUt:TTLTrg<n>:STATeON

In these commands, the "<n>" isreplaced by anumber. No space is|eft between the
command and the number because the number is not aparameter. The number is part

of the command syntax. The purpose of this notation isto save agreat deal of space

in the Command Reference. In the case of ... TTLTrg<n>..., n can be from 0 through
7. An example command statement;

OUTPUT:TTLTRG2:STATE ON

Parameter Types. The following section contains explanations and examples of
parameter types you will see later in this chapter.

Parameter Types Explanationsand Examples

Numeric Accepts all commonly used decimal representations of
numbers including optional signs, decimal points, and
scientific notation:

123, 123E2, -123, -1.23E2, .123, 1.23E-2, 1.23000E-01.
Special cases include MIN, MAX, and INFinity.

A parameter that represents units may also include a
units suffix. These are:

Volts; V, mv:103, uv=10°

Ohms: ohm, kohm=f) mohm=168

Seconds; s, msec=Fpusec=1F

Hertz; hz, khz=18 mhz=16, ghz=10

The Comments section within the Command Reference
will state whether a numeric parameter can also be specified
in hex, octal, and/or binary;

#H7B, #Q173, #B1111011

Chapter 6

HP E1415 Command Reference 159

Boolean Represents a single binary condition that is either
true or false:
ON, OFF, 1, 0.

Discrete Selects from afinite number of values. These parameters
use mnemonics to represent each valid setting.

An exampleisthe TRIGger:SOURce <source> command
where <source> can be;
BUS, EXT, HOLD, IMM, SCP,TIMer, or TTLTrg<n>.

Channel List The general form of asingle channel specification is:
ccnn
where cc represents the card number and nn represents the
channel number.

Since the HP E1415 has an on-board 64 channel multiplexer,
the card number will be 1 and the channel number can range
from 00 to 63. Some example channel specifications:
channel 0=100, channel 5=105, channel 54=154

The General form of a channel range specification is:
ccnn:cenn(colon separator)
(the second channel must be greater than the first)
Example:
channels 0 through 15=100:115

By using commas to separate them, individual and range
specifications can be combined into a single channel list:
0, 5, 6 through 32, and 45=(@2100,105,106:132,145)

Notethat achannd listisaways contained within"(@" and ")".
The Command Reference always shows the "(@" and ")"
punctuation:

(@<ch_list>)

Arbitrary Block

Program and

Response Data This parameter or datatype is used to transfer ablock of datain
the form of bytes. The block of data bytesis preceded by a
preamble which indicates either 1) the number of data bytes
which follow (definite length), or 2) that the following data
block will be terminated upon receipt of a New Line message,
and for HP-1B operation, with the EOI signal true (indefinite
length).
The syntax for this parameter is.

Definite Length; #<non-zero digit><digit(s)><data byte(s)>

Where the value of <non-zero digit> is 1-9 and represents the
number of <digit(s)>. Thevalueof <digit(s)>taken asadecimal

160 HP E1415 Command Reference Chapter 6

Linking
Commands

integer indicates the number of <data byte(s)> in the block.

Example of sending or receiving 1024 data bytes:
#41024<byte><bytel><byte2><byte3><byted>...
...<byte1021><hbyte1022><bytel1023><bytel1024>

OR
Indefinite Length; #0<data byte(s)><NL~END>

Example of sending or receiving 4 data bytes:
#0<byte><byte><byte><byte><NL"END>

Optional Parameters

Parameters shown within square brackets ([]) are optional parameters. (Note that
the brackets are not part of the command, and should not be sent to the instrument.)
If you do not specify avalue for an optional parameter, the instrument chooses a
default value. For example, consider the
FORMAT:DATA <type>[,<length>] command. If you send the command without
specifying <length>, a default value for <length> will be sel ected depending on the
<type> of format you specify. For example:

FORMAT:DATA ASC will set [,<length>] to the default for ASC of 7
FORMAT:DATA REAL will set [,<length>] to the default for REAL of 32
FORMAT:DATA REAL, 64 will set [,<length>] to 64

Be sure to place a space between the command and the first parameter.

Linking commandsisused when you want to send morethan one complete command
in asingle command statement.

Linking |EEE-488.2 Common Commandswith SCPI Commands. Usea
semicolon between the commands. For example:

*RST,OUTP:TTLT3 ON or TRIG:SOUR IMM;*TRG

Linking Multiple complete SCPI Commands. Use both a semicolon and a colon
between the commands. For example:

OUTP:TTLT2 ON;:TRIG:SOUR EXT

The semicolon as well as separating commands tells the SCPI parser to expect the
command keyword following the semicolon to be at the same hierarchical level (and
part of the same command branch) as the keyword preceding the semicolon. The
colonimmediately following the semicol ontellsthe SCPI parser to reset the expected
hierarchical level to Root.

Linkingacomplete SCPI Command with other keywor dsfrom thesamebranch
and level. Separate the first complete SCPI command from next partial command
with the semicolon only. For example take the following portion of the [SENSE]
subsystem command tree (the FUNCtion branch):

Chapter 6

HP E1415 Command Reference 161

[SENSe:]
FUNCtion
:RESistance <range>,(@<ch_list>)
:TEMPerature <sensor>[,<range>,](@<ch_list>)
:'VOLTage[:DC] [<range>,](@<ch_list>)

Rather than send a complete SCPI command to set each function, you could send:
FUNC:RES 10000,(@100:107);TEMP RTD, 92,(@108:115);VOLT (@116,123)

This sets the first 8 channels to measure resistance, the next 8 channels to measure
temperature, and the next 8 channels to measure voltage.

Note The command keywords following the semicolon must be from the same
command branch and level as the complete command preceding the
semicolon or a-113,"Undefined header" error will be generated.

C-SCPI Data Thefollowing table showstheallowabletype and sizesof the C-SCPI parameter data
Ty pes sent to themodul eand query datareturned by themodule. The parameter and returned

value type is necessary for programming and is documented in each command in
this chapter.

Data Types Description
intl6 Signed 16-bit integer number.
int32 Signed 32-bit integer number.
uint16 Unsigned 16-bit integer number.
uint32 Unsigned 32-bit integer number.
float32 32-bit floating point number.
float64 64-bit floating point number.
string String of characters (null terminated)

162 HP E1415 Command Reference Chapter 6

SCPI Command Reference

The following section describes the SCPI commands for the HP E1415. Commands
arelisted alphabetically by subsystem and also within each subsystem. A command
guideis printed in the top margin of each page. The guide indicates the current
subsystem on that page.

Chapter 6 HP E1415 Command Reference 163

ABORt

The ABORt subsystem isapart of the HP E1415'strigger system. ABOR resetsthe
trigger system from its Wait For Trigger state to its Trigger Idle state.

Subsystem Syntax ABORt

Caution ABORT stops execution of a running algorithm. The control
output is left at the last value set by the algorithm. Depending
on the process, this uncontrolled situation could even be
dangerous. Make certain that you have put your process into a
safe state before you halt execution of a controlling algorithm.

Comments * ABORI does not affect any other settings of the trigger system. When the
INITiate command is sent, the trigger system will respond just as it did before

the ABORt command was sent.
® Related Commands: INITiate[:IMMediate], TRIGger...

® *RST Condition: TRIG:SOUR HOLD

Usage ABORT If INITed, goesto Trigger Idle state. If
running algorithms, stops and goes to
Trigger Idle State.

164 HP E1415 Command Reference Chapter 6

ALGorithm

The ALGorithm command subsystem provides:
® Definition of standard and custom control |oop algorithms
® Communication with algorithm array and scalar variables
® Controlsto enable or disable individual loop algorithms
® Control of ratio of number of scan triggers per algorithm execution
® Control of loop algorithm execution speed

® Easy definition of agorithm data conversion functions

Subsystem Syntax ALGorithm
[:EXPLicit]
:ARRay ’'<alg _name>'/’<array _name>',<array block>
:ARRay? ’<alg_name>'/’<array_name>’
:DEFine '<alg_name>’[,<swap_size>],<program_block>
:SCALar '<alg_name>','<var_name>',<value>
:SCALar? '<alg_name>',’<var_name>’
:SCAN:RATI0 '<alg_name>',<value>
:SCAN:RATI0? '<alg_name>’
:SlZe? '<alg_name>'
[[STATe] '<alg_name>',ON | OFF
[:STATe]? '<alg_name>’
‘TIME? '<alg_name>’

:FUNCtion:DEFine '<function_name>',<range>,<offset>,<block data>
:OUTPut:DELay <usec>| AUTO
:OUTPut:DELay?
:UPDate
[:IMMediate]
:CHANnNel <channel_item>
‘WINDow <num_updates>
‘WINDow?

Chapter 6 HP E1415 Command Reference 165

ALGorithm

ALGorithm[:EXPLicit]:ARRay

ALGorithm[:EXPLicit;ARRay '< alg _name>'<array_name>'<array block>
places values of <array_name> for algorithm <alg_name> into the Update Queue.
This update is then pending until ALG:UPD is sent or an update event (as set by
ALG:UPD:CHANNEL) occurs.

Note ALG:ARRAY places avariable update request in the Update Queue. You
can not place more update requests in the Update Queue than are allowed
by the current setting of ALG:UPD:WINDOW or a"Too many updates --
send ALG:UPDATE command’ error message will be generated.

Parameters

Par ameter Parameter Range of Default
Name Type Values Units

alg_name string ALG1- ALG32|GLOBALS none

array_name string valid 'C’ variable name none

array_block block data block of IEEE-754 64-bit floating point none
numbers

Comments ® To send valuesto a Global array, set the <alg_name> parameter to
"GLOBALS'. To define aglobal array see the AL Gorithm:DEFine command.

® Anerror isgenerated if <alg_name> or <array_name> is not defined.

® When an array is defined (in an algorithm or in 'GLOBALS)), the HP E1415
alocates twice the memory required to store the array. When you send the
ALG:ARRAY command, the new values for the array are loaded into the
second space for this array. When you send the ALG:UPDATE, or
ALG:UPDATE:CHANNEL commands, the HP E1415 switches a pointer to
the space containing the new array values. Thisis how even large arrays can be
"updated” asif they were asingle update request. If the array is again updated,
the new values are loaded into the original space and the pointer is again
switched.

® <proghame> is not case sensitive. However, <array_name> is case sensitive.
® Related Commands: ALG:DEFINE, ALG:ARRAY?

® *RST Condition: No algorithms or variables are defined.

Usage send array valuesto my_array in ALG4
ALG:ARR 'ALG4’’my_array’,<block array data>
send array valuesto the global array glob_array
ALG:ARR 'GLOBALS''glob_array’,<block_array data>
ALG:UPD force update of variables

166 HP E1415 Command Reference Chapter 6

ALGorithm

ALGorithm[:EXPLicit]:ARRay?

ALGorithm[:EXPLicit;ARRay? '< alg_name>'’<array_name>' returnsthe
contents of <array_name> from algorithm <alg_name>. ALG:ARR? can return
contents of global arrays when <alg_name> specifies’GLOBALS.

Parameters
Par ameter Parameter Range of Default
Name Type Values Units
alg_name string ALG1- ALG32|GLOBALS none
array_name string valid 'C’ variable name none
Comments ® Anerror isgenerated if <alg_name> or <array_name> is not defined.

® Returned Value: Definite length block data of |EEE-754 64-hit float

ALGorithm[:EXPLicit]:DEFine

ALGorithm[:EXPLicit]:DEFine '< alg_name>',[<swap_size>|] '<source_code>’
is used to define control algorithms, and global variables.

Parameters
Par ameter Parameter Range of Default
Name Type Values Units
alg_name string ALG1- ALG32|GLOBALS none
swap_size numeric (uint16) 0 - Max Available Algorithm Memory | words
source_code | string or block data PIDA... | PIDB... | agorithm source none
see Comments

Comments ® The <alg_name> must be one of ALG1, ALG2, ALG3 etc. through ALG32 or
GLOBALS. The parameter is not case sensitive. 'ALG1’ and 'algl’ are
equivalent as are'GLOBALS and 'globals’.

® The <swap_size> parameter is optional. Include this parameter with the first
definition of <alg_name> when you will want to change <alg_name> later
whileitisrunning. The value can range up to about 23Kwords (AL G:DEF will
then allocate 46K words asiit creates two spaces for this algorithm).

-- If included, <swap_size> specifies the number of words of memory to
alocate for the algorithm specified by <alg_name>. The HP E1415 will
then allocate this much memory again, as an update buffer for this
algorithm. Note that this doubles the amount of memory space requested.
Think of this as "spacel" and "space2" for algorithm <alg_name>. When
you later send a replacement algorithm (must be sent without the
<swap_size> parameter), it will be placed in "space2". You must send an
ALG:UPDATE command for execution to switch from the original, to the

Chapter 6 HP E1415 Command Reference 167

ALGorithm

replacement algorithm. If you again change the algorithm for <alg_name>,
it will be executed from "spacel" and so on. Note that <swap_size> must be
large enough to contain the original executable code derived from
<source_code> and any subsequent replacement for it or an error 3085
"Algorithm too big" will be generated.

-- If <swap_size> isnot included, the HP E1415 will allocated just enough
memory for algorithm <alg_name>. Since there is no swapping buffer
allocated, this algorithm cannot be changed until a* RST command is sent to
clear al algorithms. See "When A ccepted and Usage".

® The <source_code> parameter contents can be:

-- When <alg_name> is’ALG1’ through 'ALG32':

a. 'PIDA(<inp_channel>,<outp_channel>)’, or
'PIDB(<inp_channel>,<outp_channel>,<alarm_channel>)’
< _channel> parameters can specify actual input and output channels or
they can specify global variables. This can be useful for inter-algorithm
communication. Any global variable name used in this manner must have
already been defined before this algorithm.

ALG:DEF 'ALG3',’PIDB(1100,0124,0132.B2)’

b. Algorithm Language source code representing a custom algorithm.
ALG:DEF 'ALG5'’if(First_loop) 0116=0; 0116=0116+0.01;,

-- When <alg_name> is'GLOBALS, Algorithm Language variable
declarations. A variable name must not be the same as an aready define user
function.

ALG:DEF 'GLOBALS' 'static float my_glob_scalar, my_glob_array[24];

The Algorithm Language source code is translated by the HP E1415's driver
into an executable form and sent to the module. For 'PIDA’, and 'PIDB’ the
driver sends the stored executable form of these PID algorithms.

® The <source_code> parameter can be one of three different SCPI types:

-- Quoted String: For short segments (single lines) of code, enclose the code
string within single (apostrophes), or double quotes. Because of string
length limitations within SCPI and some programming platforms, we
recommend that the quoted string length not exceed a single program line.
Examples:

ALG:DEF 'ALG1','0108=I100;" or ALG:DEF 'ALG3''PIDA(I1100,0124)

Definite Length Block Program Data: For longer code segments (like complete
custom algorithms) this parameter works well because it specifies the exact length
of the data block that will be transferred. The syntax for this parameter typeis:

168 HP E1415 Command Reference Chapter 6

When accepted

and Usage

ALGorithm

#<non-zero digit><digit(s)><data byte(s)>

Where the value of <non-zero digit> is 1-9 and represents the number of <digit(s)>.
The value of <digit(s)> taken as a decimal integer indicates the number of <data
byte(s)> in the block. Example from "Quoted String" above:

ALG:DEF 'ALG1'#2110108=1100;0 (where"O" isanull byte)

Note For Block Program Data, the Algorithm Parser requires that the
source_code data end with anull (0) byte. You must append the null byte to
the end of the block’s <data byte(s)>, and account for it in the byte count
<digit(s)> from above. If the null byteis not included, or <digit(s)> doesn't
includeit, the error "Algorithm Block must contain termination \0™ will be
generated.

Indefinite Length Block Program Data: Thisform terminates the data transfer
when it received an End Identifier with the last data byte. Use this form only when
you are sure your controller platform will include the End Identifier. If it is not
included, the ALG:DEF command will "swallow" whatever data follows the
algorithm code. The syntax for this parameter typeis:

#0<data byte(s)><null byte with End Identifier>

Example from "Quoted String" above:
ALG:DEF 'ALG1'#00108=1100;01 (where"O" isanull byte)

Note For Block Program Data, the Algorithm Parser requires that the
source_code dataend with anull (0) byte. You must append the null byte to
the end of the block’s <data byte(s)>. The null byte is sent with the End
Identifier. If the null byte is not included, the error "Algorithm Block must
contain termination \0™ will be generated.

3. If <alg_name> is not enabled to swap (not originally defined with the
<swap_size> parameter included) then both of the following conditions must
betrue:

a. Moduleisin Trigger Idle State (after *RST, or ABORT, and before INIT).

OK

*RST

ALG:DEF 'GLOBALS'static float My_global;’
ALG:DEF 'ALG2'PIDA(1100,0108)’
ALG:DEF 'ALG3'’My_global = My_global + 1;’

Error
INIT

ALG:DEF 'ALG5','PIDB(1101,0109,0124.B0)’
"Can't define new algorithm while running"

b. The<alg_name> hasnot already been defined sincea* RST command. Here

Chapter 6

HP E1415 Command Reference 169

ALGorithm

Notes

<alg_name> specifies either an algorithm name or 'GLOBALS.

OK
*RST
ALG:DEF 'GLOBALS'static float My_global;’

Error

*RST

ALG:DEF 'GLOBALS’, 'static float My_global;’
"No error"

ALG:DEF 'GLOBALS' 'static float A_different_global’
"Algorithm already defined" Because 'GLOBALS already defined

Error

*RST

ALG:DEF 'ALG3',’PIDA(1100,0108)’
"No error"

ALG:DEF 'ALG3','PIDB(1100,0108,0124.B0)’
"Algorithm already defined" Because 'ALG3' already defined

4. If <alg_name> has been enabled to swap (originally defined with the
<swap_size> parameter included) then the <alg_name> can be re-defined (do
not include <swap_size> now) either while the module isin the Trigger Idle
State, or while in Waiting For Trigger State (INITed). Here <alg_name> isan
agorithm name only, not 'GLOBALS.

OK

*RST

ALG:DEF 'ALG3',200,'if(0108<15.0) 0108=0108 + 0.1; else 0108 = -15.0;’
INIT starts algorithm

ALG:DEF 'ALG3',if(0108<12.0) 0108=0108 + 0.2; else 0108 = -12.0;’
ALG:UPDATE Required to cause new code to run
"No error"

Error

*RST

ALG:DEF 'ALG3',200,'if(0108<15.0) 0108=0108 + 0.1; else 0108 = -15.0;’
INIT starts algorithm

ALG:DEF 'ALG3',200,'if(0108<12.0) 0108=0108 + 0.2; else 0108 = -12.0;’
"Algorithm swapping already enabled; Can't change size"
Because <swap_size> included at re-definition

1. Channelsreferenced by algorithms when they are defined, are only placed in
the channel list before INIT. The list cannot be changed after INIT. If you
re-define an algorithm (by swapping) after INIT, and it references channels
not already in the channel list, it will not be able to access the newly
referenced channels. No error message will be generated. To make sure all
required channelswill beincluded in the channel list, define <alg_name> and
re-define all algorithms that will replace <alg_name> by swapping them
before you send INIT. Thisinsuresthat all channels referenced in these
algorithms will be available after INIT.

170 HP E1415 Command Reference Chapter 6

ALGorithm

2. If you re-define an agorithm (by swapping) after INIT, and it declares an
existing variable, the declaration-initialization statement
(eg. static float my_var = 3.5) will not change the current value of
that variable.

3. Thedriver only calculates overall execution time for a gorithms defined
before INIT. This calculation is used to set the default output delay (same as
executing ALG:OUTP:DELAY AUTO). If an agorithm is swapped after
INIT that take longer to execute than the original, the output delay will behave
asif set by ALG:OUTP:DEL 0, rather than AUTO (see ALG:OUTP:DEL
command). Use the same procedure from note 1 to make sure the longest
algorithm execution timeis used to set ALG:OUTP:DEL AUTO before INIT.

ALGorithm[:EXPLicit]:SCALar

ALGorithm[:EXPLicit;:SCALar '< alg_name>',<var_name>' <value> setsthe
value of the scalar variable <var_name> for algorithm <alg_name> into the Update
Queue. Thisupdateisthen pending until ALG:UPD is sent or an update event (as set
by ALG:UPD:CHANNEL) occurs.

Note ALG:SCALAR places avariable update request in the Update Queue. You
can not place more update requests in the Update Queue than are allowed
by the current setting of ALG:UPD:WINDOW or a"Too many updates --
send ALG:UPDATE command" error message will be generated.

Parameters
Parameter Parameter Range of Default
Name Type Values Units
alg_name string ALG1 - ALG32 or GLOBALS none
var_name string valid 'C’ variable name none
value numeric (float32) |EEE-754 32-bit floating point number none
Comments ® To send valuesto aglobal scalar variable, set the <alg_name> parameter to
'‘GLOBALS. To define ascalar global variable see the ALGorithm:DEFine
command.
® Anerror isgenerated if <alg_name> or <var_name> is not defined.
® Related Commands: ALG:DEFINE, ALG:SCAL?, ALG:UPDATE
® *RST Condition: No algorithms or variables are defined.
Usage ALG:SCAL 'ALG1,'my_var’,1.2345 1.2345 to variablemy _var in ALG1
ALG:SCAL 'ALG1'/another’,5.4321 5.4321 to variable another also in ALG1
ALG:SCAL 'ALG3’my_global_var’,1.001 1.001 to global variable
ALG:UPD update variables from update queue

Chapter 6 HP E1415 Command Reference 171

ALGorithm

ALGorithm[:EXPLicit]:SCALar?

ALGorithm[:EXPLicit]:SCALar? '< alg_name>',<var_name>' returnsthevalueof
the scalar variable <var_name> in algorithm <alg_name>.

Parameters
Par ameter Parameter Range of Default
Name Type Values Units
alg_name string ALG1-ALG32 none
var_name string valid 'C’ variable name none
Comments ® Anerror isgenerated if <alg_name> or <var_name> is not defined.

® Returned Value: numeric value. Thetypeis float32.

ALGorithm[:EXPLicit]:SCAN:RATIo

ALGorithm[:EXPLicit:SCAN:RATio '< alg_name>',<num_trigs> specifiesthe
number of scan triggersthat must occur for each execution of algorithm <alg_name>.
This alows you to execute the specified algorithm less often than other algorithms.
This can be useful for algorithm tuning.

Notes 1. The command ALG:SCAN:RATio <alg_name>,<num _trigs> does not take

effect until an ALG:UPDATE, or ALG:UPD:CHAN command is received.
This allows you to send multiple ALG:SCAN:RATIO commands and then
synchronize their effect with ALG:UPDATE.

2. ALG:SCAN:RATIo0 places avariable update request in the Update Queue.
You can not place more update requestsin the Update Queue than are allowed
by the current setting of ALG:UPD:WINDOW or a"Too many updates --
send ALG:UPDATE command" error message will be generated.

Parameters
Parameter Parameter Range of Default
Name Type Values Units
alg_name string ALG1-ALG32 none
num trigs numeric (int16) 1to 32,767 none

Comments Specifying avalueof 1 (the default) causes the named algorithm to be executed each
time atrigger isreceived. Specifying avalue of n will cause the algorithm to be
executed once every ntriggers. All enabled a gorithms execute on the first trigger
after INIT.

® The algorithm specified by <alg_name> may or may not be currently defined.
The specified setting will be used when the algorithm is defined.

172 HP E1415 Command Reference Chapter 6

ALGorithm

* Related Commands: ALG:UPDATE, ALG:SCAN:RATIO?

* When Accepted: Both before and after INIT. Also accepted before and after
the a gorithm referenced is defined.

® *RST Condition: ALG:SCAN:RATIO = 1for all agorithms

Usage ALG:SCAN:RATIO 'ALG4,16 ALG4 executes once every 16 triggers.

ALGorithm[:EXPLicit]:SCAN:RATi0o?

ALGorithm[:EXPLicit]:SCAN:RATio? '< alg_name>’ returns the number of
triggers that must occur for each execution of <alg_name>.

Comments ® Since ALG:SCAN:RATIO isvalid for an undefined a gorithm,
ALG:SCAN:RATIO?will return the current ratio setting for <alg_name> even
if it is not currently defined.

® Returned Value: numeric, 1to 32,768. Thetypeisint16.

ALGorithm[:EXPLicit]:SIZE?

ALGorithm[:EXPLicit]:SIZE? '< alg_name>' returns the number of words of
memory allocated for algorithm <alg_name>.

Parameters
Par ameter Parameter Range of Default
Name Type Values Units
alg_name string ALG1-ALG32 none
Comments ® Since the returned value is the memory allocated to the algorithm, it will only

egual the actual size of the algorithm if it was defined by ALG:DEF without
its[<swap_size>] parameter. If enabled for swapping (if <swap_size> included
at origina definition), the returned value will be equal to (<swap_size>)* 2.

Note If <alg_name> specifies an undefined algorithm, ALG:SIZE? returns O.
This can be used to determine whether algorithm <alg_name> is defined.

® Returned Value: numeric value up to the maximum available algorithm
memory (this approximately 46K words). The typeisint32.

® *RST Condition: returned valueis 0.

Chapter 6 HP E1415 Command Reference 173

ALGorithm

ALGorithm[:EXPLicit][:STATe]

Notes

ALGorithm[:EXPLicit][:STATe] '< alg_name>',<enable> specifiesthat algorithm
<alg_name>, when defined, should be executed (ON), or not executed (OFF) during
run-time.

1. Thecommand ALG:STATE <alg_name>, ON | OFF does not take effect until
an ALG:UPDATE, or ALG:UPD:CHAN command is received. This allows
you to send multiple ALG:STATE commands and then synchronize their
effect.

2. ALG:STATE places a variable update request in the Update Queue. You can
not place more update requests in the Update Queue than are allowed by the
current setting of ALG:UPD:WINDOW or a"Too many updates -- send
ALG:UPDATE command" error message will be generated.

Caution When ALG:STATE OFF disables an algorithm, its control output

is left at the last value set by the algorithm. Depending on the
process, this uncontrolled situation could even be dangerous.
Make certain that you have put your process into a safe state

before you halt execution of a controlling algorithm.

The HP E1535 Watchdog Timer SCP was specifically developed
to automatically signal that an algorithm has stopped
controlling a process. Use of the Watchdog Timer is
recommended for critical processes.

Parameters
Parameter Parameter Range of Default
Name Type Values Units
alg_name string ALG1- ALG32 none
enable boolean (uint16) 0|1|ON |OFF none
Comments ® The algorithm specified by <alg_name> may or may not be currently defined.
The setting specified will be used when the algorithm is defined.
® *RST Condition: ALG:STATE ON
® When Accepted: Both before and after INIT. Also accepted before and after
the algorithm referenced is defined.
® Related Commands: ALG:UPDATE, ALG:STATE?, ALG:DEFINE
Usage ALG:STATE 'ALG2',0OFF disable ALG2

174 HP E1415 Command Reference Chapter 6

ALGorithm

ALGorithm[:EXPLicit][:STATe]?

ALGorithm[:EXPLIcit][:STATe]? '< alg_name>’ returns the state (enabled or
disabled) of algorithm <alg_name>.

Parameters
Par ameter Parameter Range of Default
Name Type Values Units
alg_name string ALG1-ALG32 none

Comments ® Since ALG:STATE isvalid for an undefined algorithm, ALG:STATE? will
return the current state for <alg_name> even if it is not currently defined.

® Returned Value: Numeric, 0 or 1. Typeisuint16.

® *RST Condition: ALG:STATE 1

ALGorithm[:EXPLicit]: TIME?

ALGorithm[:EXPLIcit . TIME? '< alg_name>' computes and returns a worst-case
execution time estimate in seconds.

Parameters
Par ameter Parameter Range of Default
Name Type Values Units
alg_name string ALG1 - ALG32 or MAIN none

Comments ®* When <alg_name> isALGL1 through ALG32, ALG:TIME? returns only the
time required to execute the algorithm’s code.

®* When <alg_name> is'MAIN’, ALG:TIME? returns the worst-case execution
time for an entire measurement & control cycle (sum of MAIN, all enabled
algorithms, analog and digital inputs, and control outputs).

® |f triggered more rapidly than the value returned by ALG:TIME? 'MAIN’, the
HP E1415 will generate a"Trigger too fast" error.

Note If <alg_name> specifies an undefined algorithm, ALG:TIME? returns O.
This can be used to determine whether algorithm <alg_name> is defined.

* When Accepted: Before INIT only.

® Returned Value: numeric value. Thetypeis float32

Chapter 6 HP E1415 Command Reference 175

ALGorithm

ALGorithm:FUNCtion:DEFine

ALGorithm:FUNCtion:DEFine '< function_name>',<range>,<offset>,
<func_data> defines a custom function that can be called from within a custom

agorithm. See Appendix F page 367 "Generating User Defined Functions' for full

information.
Parameters

Par ameter Parameter Range of Default

Name Type Values Units

function_name string valid 'C’ identifier none

(if not already defined in 'GLOBALS))

range numeric (float32) see comments none

offset numeric (float32) see comments none

func_data 512 element array of see comments none

uintl6

Comments ® By providing this custom function capahility, the HP E1415's algorithm
language can be kept simple in terms of mathematical capability. This
increases speed. Rather than having to calculate high-order polynomial
approximations of non-linear functions, this custom function scheme loads a
pre-computed look-up table of values into memory. This method allows
computing virtually any transcendental or non-linear function in only
17useconds. Resolution is 16 bits.

® <function_name> is a global identifier and cannot be the same as a previously
define global variable. A user function is globally available to all defined
algorithms.

® You generate values for <range>, <offset>, and <func_data> with a program
supplied with your HP E1415. It is provided in C-SCPI, and HP Basic forms.
See Appendix F page 367 "Generating User Defined Functions' for full
information.

® <range>, and <offset> define the allowable input values to the function
(domain). If values input to the function are equal to or outside of
(x<range>+<offset>), the function may return zINF in IEEE-754 format. For
example; <range> = 8 (-8 to 8), <offset> = 12. The alowable input values
must be greater than 4 and |ess than 20.

® <func_data> isa 512 element array of type uint16.

® The algorithm syntax for calling is: <function_name> (<expression>). for
example:

0116 = squareroot(2 * Input_val);

® Functions must be defined before defining algorithms that reference them.

176 HP E1415 Command Reference Chapter 6

ALGorithm

* When Accepted: Before INIT only.

Usage ALG:FUNC:DEF 'F1’,8,12,<block data> send range, offset and table values for

function F1

ALGorithm:OUTPut:DELay>

Parameters

Comments

ALGorithm:OUTPut:DELay <delay> setsthe delay from Scan Trigger to start of

output phase.
Parameter Parameter Range of Default
Name Type Values Units
delay numeric (float32) 0-.081| AUTO (2.5us resolution) seconds

® The algorithm output statements (e.g. 0115 = Out_val) DO NOT program
outputs when they are executed. Instead, these statements write to an
intermediate Output Channel Buffer which isread and used for output AFTER
all algorithms have executed AND the algorithm output delay has expired (see
Figure 6-1). Also note that not all outputs will occur at the same time but will
take approximately 10usec per channel to write.

* When <delay> is 0, the Output phase beginsimmediately after the Calculate
phase. This provides the fastest possible execution speed while potentially
introducing variations in the time between trigger and beginning of the Output
phase. The variation can be caused by conditional execution constructsin
agorithms, or other execution time variations.

® |f you set <delay> to less time than is required for the Input + Update +
Calculate ALG:OUTP:DELAY ?will report the time you set, but the effect will
revert to the samethat is set by ALG:OUTP:DELAY 0 (Output begins
immediately after Calculate).

® When <delay> is AUTO, the delay is set to the worst-case time required to
execute phases 1 through 3. This provides the fastest execution speed while
maintaining a fixed time between trigger and the OUTPUT phase.

® \When you want to set the time from trigger to the beginning of OUTPUT, use
the following procedure. After defining all of your algorithms, execute:

ALG:OUTP:DEL AUTO sets minimum stable delay
ALG:OUTP:DEL? returns this minimum delay
ALG:OUTP:DEL <minimum+additional> additional = desired - minimum

Note that the delay value returned by ALG:OUTP:DEL ?isvalid only until
another algorithm isloaded. After that, you would have to re-issue the
ALG:OUTP.DEL AUTO and ALG:OUTP:DEL? commands to determine the
new delay that includes the added algorithm.

®* When Accepted: Before INIT only.

Chapter 6

HP E1415 Command Reference 177

ALGorithm

® *RST Condition: ALG:OUTP.DELAY AUTO

ALGorithm:OUTPut:DELay?

ALGorithm:OUTPut:DELay? returns the delay setting from ALG:OUTP:DEL.

Comments ® The value returned will be either the value set by ALG:OUTP:DEL <delay>,
or the value determined by ALG:OUTP.DEL AUTO.

* When Accepted: Before INIT only.

® *RST Condition: ALG:OUTP:DEL AUTO, returns delay setting determined
by AUTO mode.

® Returned Value: number of seconds of delay. The typeis float32.

ALGorithm:UPDate[:IMMediate]

ALGorithm:UPDate[:IMMediate] requestsanimmediate update of any scalar, array,
algorithm code, ALG:STATE, or ALG:SCAN:RATIO changes that are pending.

Comments ® Variables and algorithms can be accepted during Phase 1-INPUT or
Phase 2-UPDATE in Figure 6-1 when INIT is active. All writesto variables
and algorithms occur to their buffered elements upon receipt. However, these
changes do not take effect until the ALG:UPD:IMM command is processed at
the beginning of the UPDATE phase. The update command can be received at
any time prior to the UPDATE phase and will be the last command accepted.
Note that the ALG:UPD:WINDow command specifies the maximum number
of updates to do. If no update command is pending when entering the
UPDATE phase, then thistime is dedicated to receiving more changes from
the system.

® Assoon asthe ALG:UPD:IMM command is received, no further changes are
accepted until all updates are complete. A query of an algorithm value
following an UPDate command will not be executed until the UPDate
compl etes; this may be a useful synchronizing method.

A A

4 1 2 3 4 1
TPUT INPUT | UPDATE EXECUTE ALGS OUTPUT INPI
ut table from SCP | variables & | execute all enabled algorithms eee output table from ¢
to SCP channels, | algorothms sent to SCP chanr
innels analog & channels analo

digital digit

A

l«——— Setby ALG:OUTPUT.DELay (if any) ——— P

Trigger Event Trigger Event

Figure 6-1. Updating Variables and Algorithms

178 HP E1415 Command Reference Chapter 6

Command
Sequence

ALGorithm

®* When Accepted: Before or after INIT.

® Related Commands: ALG:UPDATE:WINDOW, ALG:SCALAR,
ALG:ARRAY, ALG:STATE, and ALG:SCAN:RATIO, ALG:DEF (with
swapping enabled)

The following exampl e shows three scal ars being written with the associated update
command following. See ALG:UPD:WINDOW.

ALG:SCAL ALG1','Setpoint’,25 provide 3 new alg scalar values
ALG:SCAL 'ALG1','P_factor’,1.3

ALG:SCAL 'ALG2','P_factor’,1.7

ALG:UPD update valuesin alg
ALG:SCAL? 'ALG2’,'Setpoint’ query for new updated scalar

ALGorithm:UPDate:CHANnNel

Parameters

Comments

ALGorithm:UPDate:CHANnel <dig_chan> This command is used to update
variables, algorithms, ALG:SCAN:RATIO, and ALG:STATE changes when the
specified digital input level changes state. When the ALG:UPD:CHAN command is
executed, the current state of the digital input specified is saved. The update will be
performed at the next update phase (UPDATE in Figure 6-1), following the channel’s
change of digital state. This command is useful to synchronize multiple HP E1415s
when you want all variable updates to be processed at the same time.

Parameter Parameter Range of Default
Name Type Values Units
dig_chan Algorithm Input channel for HP E1533: Iccc.Bb none
Language channel for HP E1534: Iccc

specifier (string) where ccc=normal channel number and
b=bit number (include".B")

® The duration of the level change to the designated bit or channel MUST be at
least the length of time between scan triggers. Variable and algorithm changes
can be accepted during the INPUT or UPDATE phases (Figure 6-1) when INIT
isactive. All writes to variables and algorithms occur to their buffered
elements upon receipt. However, these changes do not take effect until the
ALG:UPD:CHAN command is processed at the beginning of the UPDATE
phase. Note that the ALG:UPD:WINDow command specifies the maximum
number of updatesto do. If no update command is pending when entering the
UPDATE phase, then thistime is dedicated to receiving more changes from
the system.

Note Assoonasthe ALG:UPD:CHAN command is received, the HP E1415
begins to closely monitor the state of the update channel and can not
execute other commands until the update channel changes state to complete
the update

Chapter 6

HP E1415 Command Reference 179

ALGorithm

® Note that an update command issued after the start of the UPDATE phase will
be buffered but not executed until the beginning of the next INPUT phase. At
that time, the current stored state of the specified digital channel is saved and
used as the basis for comparison for state change. If at the beginning of the
scan trigger the digital input state had changed, then at the beginning of the
UPDATE phase the update command would detect a change from the previous
scan trigger and the update process would begin.

* When Accepted: Before and After INIT.

Command Thefollowing example shows three scalars being written with the associated update

Sequence command following. Whenthe ALG:UPD:CHAN command isreceived, it will read
the current state of channel 108, bit 0. At the beginning of the UPDATE phase, a
check will be made to determine if the stored state of channel 108 bit 0, is different
from the current state. If so, the update of all three scalars take effect next Phase 2.

INIT

ALG:SCAL 'ALG1','Setpoint’,25

ALG:SCAL 'ALG1','P_factor’,1.3

ALG:SCAL 'ALG2'/'P_factor’,1.7

ALG:UPD:CHAN ’'1108.B0’ update on state change at bit zero of 8-bit
channel 8

ALGorithm:UPDate:WINDow

ALGorithm:UPDate:WINDow <num_updates> specifies how many updates you
may need to perform during phase 2 (UPDATE). The DSPwill processthiscommand
and assign a constant window of time for UPDATE.

Parameters
Parameter Parameter Range of Default
Name Type Values Units
num_updates numeric (int16) 1-512 none
Comments ® The default value for num_updatesis 20. If you know you will need fewer

updates, specifying a smaller number will result in slightly greater loop
execution speeds.

® This command creates atime interval in which to perform all pending
agorithm and variable updates. To keep the loop times predictable and stable,
thetimeinterval for UPDATE isconstant. That is, it existsfor al active
algorithms, each time they are executed whether or not an update is pending.

* *RST Condition: ALG:UPD:WIND 20

® When Accepted: Before INIT only.

Usage You decideyou will need to update a maximum of 8 variables during run-time.

ALG:UPD:WIND 8

180 HP E1415 Command Reference Chapter 6

ALGorithm

Notes 1. When the number of update requests exceeds the Update Queue size set with
ALG:UPD:WINDOW by one, the module will refuse the request and will
issue the error message "Too many updatesin queue. Must send UPDATE
command". Send ALG:UPDATE, then re-send the update request that caused
the error.

2. The"Too many updatesin queue..." error can occur before the moduleis
INITialized. It's not uncommon with several algorithms defined, to have more
variables that need to be pre-set before INIT than you will changein one
update after the algorithms are running. You may send INIT with updates
pending. The INIT command automatically performs the updates before
starting the algorithms.

ALGOrithm:UPDate:WINDow?

ALGOrithm:UPDate:WINDow? returns the number of variable, and agorithm
updates allowed within the UPDATE window.

® Returned Value: number of updatesin the UPDATEwindow. Thetypeis
int16

Chapter 6 HP E1415 Command Reference 181

ARM

With the HP E1415, when the TRIG:SOURCE isset to TIMer, an ARM event must
occur to start the timer. This can be something as simple as executing the
ARM[:IMMediate] command, or it could be another event selected by
ARM:SOURCE.

Note The ARM subsystem may only be used then the TRIGger:SOURce is
TIMer. If the TRIGger:SOURceisnot TIMer and ARM:SOURce is set to
anything other than IMMediate, an Error -221," Settings conflict" will be
generated.

The ARM command subsystem provides:
* An immediate software ARM (ARM:IMM).

® Selection of the ARM source (ARM:SOUR BUS | EXT |HOLD | IMM | SCP |
TTLTRG<n>) when TRIG:SOUR is TIMer.

Figure 6-2 shows the overall logical model of the Trigger System.

ARM:SOURce <source>

1 1
1 1
1 1
1 1
l l
I . I
i 2 TRIGger:TIMer <interval> !
1 D 1
! 3 !
' 8 Trigger .
I 5 Timer !
I o) I
| @ |
| = I
I 9<: I
' i TRIGger:SOURce <source>
l l
! ! TIMer N
1 1 8
§ BUS ety Satie il i Rt el et 3
3 [}
3 EXTernal % Internal
& HOLD e Trigger Trigger Signal
g . 3 Enable
;_9: IMMediate %]
= o]
E TTS—?m) §
z SCP Trg E
Trigger
Counter

TRIGger:COUNt <count>
Figure 6-2. Logical Trigger Model

182 HP E1415 Command Reference Chapter 6

ARM

Subsystem Syntax ARM
[:IMMediate]
:SOURce BUS | EXTernal | HOLD | IMMediate | SCP | TTLTrg<n>
:SOURce?

ARM[:IMMediate]

ARM[:IMMediate] armsthetrigger systemwhenthemoduleisset tothe ARM:SOUR
BUS or ARM:SOUR HOLD mode.

Comments * Related Commands: ARM:SOURCE, TRIG:SOUR

® *RST Condition: ARM:SOUR IMM

Usage ARM:IMM After INIT, systemisready for trigger
event
ARM Same as above (:IMM is optional)
ARM:SOURce

ARM:SOURce <arm_source> configures the ARM system to respond to the
specified source.

Parameters
Parameter Parameter Range of Default
Name Type Values Units
arm_source discrete (string) BUS|EXT |HOLD | IMM | SCP none
| TTLTrg<n>
Comments ® The following table explains the possible choices.
BUS ARM[:IMMediate]
EXTerna “TRG” signal on terminal module
HOLD ARM[:IMMediate]
IMMediate The arm signal is always true (continuous arming).
SCP SCP Trigger Bus (future HP or SCP Breadboard)
TTLTrg<n> The VXIbus TTLTRG lines (n=0 through 7)

® See note about ARM subsystem on page 182.

®* When TRIG:SOURCE isTIMER, an ARM event isrequired only to trigger the
first scan. After that the timer continues to run and the modul e goes to the
Waiting For Trigger State ready for the next Timer trigger. An ABORT
command will return the module to the Trigger Idle State after the current scan
is completed. See TRIG:SOURce for more detail .

Chapter 6 HP E1415 Command Reference 183

ARM

Usage

ARM:SOURce?

While ARM:SOUR isIMM, you need only INITiate the trigger system to start a
measurement scan.

® When Accepted: Before INIT only.

® Related Commands: ARM:IMM, ARM:SOURCE?, INIT[:IMM],
TRIG:SOUR

® *RST Condition: ARM:SOUR IMM

ARM:SOUR BUS Armwith ARM command
ARM:SOUR TTLTRG3 Armwith VXIbus TTLTRG3 line

Usage

ARM:SOURce? returnsthe current arm source configuration. See the ARM:SOUR
command for more response data information.

® Returned Value: Discrete, one of BUS, HOLD, IMM, SCP, or TTLTO
through TTLT7. The C-SCPI typeisstring.

ARM:SOUR? An enter statement return arm source
configuration

184 HP E1415 Command Reference Chapter 6

CALibration

The Calibration subsystem provides for two major categories of calibration.

1. "A/D Cdibration"; In these procedures, an external multimeter is used to
calibrate the A/D gain on al 5 of its ranges. The multimeter also determines
the value of the HP E1415's internal calibration resistor. The values generated
from this calibration are then stored in nonvolatile memory and become the
basis for "Working Calibrations. These procedures each require a sequence of
several commands from the CALibration subsystem (CAL:CONFIG...,
CAL:VALUE...,and CAL:STORE ADC). Alwaysexecute *CAL?or a
CAL:TARE operation after A/D Calibration.

2. "Working Calibration”, of which there are three levels (see Figure 6-3):

-- "A/D Zero"; This function quickly compensates for any short term A/D
converter offset drift. Thiswould be called the auto-zero function in a
conventional voltmeter. In the HP E1415 where channel scanning speed is
of primary importance, this function is performed only when the
CAL:ZERO? command is executed. Execute CAL:ZERQO? as often as your
control setup will allow.

-- "Channel Calibration"; This function corrects for offset and gain errors for
each module channel. The internal current sources are aso calibrated. This
calibration function corrects for thermal offsets and component drift for
each channel out to the input side of the Signal Conditioning Plug-On
(SCP). All calibration sources are on-board and this function is invoked
using either the* CAL? or CAL:SETup command.

-- "Channel Tare"; This function (CAL:TARE) corrects for voltage offsetsin
external system wiring. Here, the user places a short across transducer
wiring and the voltage that the module measures is now considered the new
"zero" value for that channel. The new offset value can be stored in
non-volatile calibration memory (CAL:STORE TARE) but isin effect
whether stored or not. System offset constants which are considered
long-term should be stored. Offset constants which are measured relatively
often would not require non-volatile storage. CAL: TARE automatically
executesa*CAL?

Chapter 6 HP E1415 Command Reference 185

CALibration

T IITTIITIITTIITTTTTTTTTTTTTTTo 1
| | | |
| | *CAL7 or | 8 |
! | CAL:SETup SCP_|i !
| | scp | 8 |
| I 1 i g 2
| . | plser s
I - ! () [8 I
: CAL:TARE : i i ié } g_ :
I : I . o \ 5 |
| | | | = | 8 > |
= .
| . s e
| | | | SCP ||———+— é —
| | | | |) |
! ' ICAL:ZERO?! scp | 8 !
	S - I 8			
	SCP			
L T 3

Figure 6-3. Levels of Working Calibration

Subsystem Syntax CALibration
:CONFigure
‘RESistance
'VOLTage <range>, ZERO | FS
:SETup
:SETup?
:STORe ADC | TARE
‘TARE (@<ch_list>)
‘RESet
‘TARE?
‘VALue
:RESistance <ref ohms>
:VOLTage <ref volts>
:ZERO?

CALibration:CONFigure:RESistance

CALibration:CONFigure:RESistance connects the on-board reference resistor to
the Calibration Bus. A four-wire measurement of the resistor can be made with an
external multimeter connected totheH Cal, L Cal, H ohm, and L ohm terminalson
the Terminal Module, or theV H,V L, Q H, and Q L terminals on the Cal Bus
connector.

Comments ® Related Commands; CAL:VAL:RES, CAL:STOR ADC

* When Accepted: Not while INITiated

186 HP E1415 Command Reference Chapter 6

Command
Sequence

CALibration

CAL:CONF:RES connect reference resistor to Calibration
Bus

*OPC? or SYST:ERR? must wait for CAL: CONF:RESto
complete

(now measure ref resistor with external DMM)

CAL:VAL:RES <measured value> Send measured value to module

CAL:STORE ADC Store cal constants in non-volatile
memory (used only at end of complete cal
sequence)

CALibration:CONFigure:VOLTage

Parameters

Comments

Command
Sequence

CALibration:CONFigure:VOLTage <range>,<zero_fs> connects the on-board
voltage reference to the Calibration Bus. A measurement of the source voltage can
be made with an external multimeter connected to the H Cal and L Cal terminalson
the Terminal Module, or theV H and V L terminals on the Cal Bus connector. The
range parameter controls the voltage level available when the zero_fs parameter is
set to FSCale (full scale).

Parameter Par ameter Range of Default
Name Type Values Units
range numeric (float32) see comments volts

zero fs discrete (string) ZERO | FSCdle none

® The range parameter must be within £5% of one of the 5 following val ues.
.0625VDC, .25VDC, 1VDC, 4VDC, 16VDC
range may be specified in millivolts (mv).

® The FSCALE output voltage of the calibration source will be greater than 90%
of the nominal value for each range, except the 16V range where the output is
10V.

* When Accepted: Not while INITiated

* Related Commands: CAL:VAL:VOLT, STOR ADC

CAL:CONF:VOLTAGE .0625, ZERO connect voltage reference to Calibration
Bus

*OPC? or SYST:ERR? must wait for CAL: CONF:VOLT to
complete

(now measure voltage with external DMM)

CAL:VAL:VOLT <measured value> Send measured value to module

repeat above sequence for full-scale

repeat zero and full-scale for remaining ranges (.25, 1, 4, 16)

CAL:STORE ADC Sorecal constants in non-volatile
memory (used only at end of compl ete cal
sequence)

Chapter 6

HP E1415 Command Reference 187

CALibration

CALibration:SETup

CALibration:SETup causes the Channel Calibration function to be performed for
every module channelwith an analog SCP installed (input or output). The Channel
Calibration function calibratesthe A/D Offset, and the Gain/Offset for these analog
channels. This calibration isaccomplished using internal calibration references. For
more information see * CAL? on page 287.

Comments ® CAL:SET performs the same operation as the * CAL? command except that
sinceit is not aquery command it doesn't tie-up the C-SCPI driver waiting for
response data from the instrument. If you have multiple HP E1415s in your
system you can start a CAL:SET operation on each and then execute a
CAL:SET? command to compl ete the operation on each instrument.

* Related Commands: CAL:SETup?, *CAL?

* When Accepted: Not while INITiated

Usage CALSSET start SCP Calibration on 1st HP E1415
: start SCP Calibration on more
HP E1415s
CAL:SET start SCP Calibration on last HP E1415
CAL:SET? query for results from 1st HP E1415
: query for results frommore HP E1415s
CAL:SET? query for results fromlast HP E1415

CALibration:SETup?

CALibration:SETup? Returnsavaluetoindicatethe successof thelast CAL:SETup
or *CAL? operation. CAL:SETup? returns the value only after the CAL:SETup
operation is complete.

Comments ® Returned Value:
Value M eaning Further Action
0 Cal OK None
-1 Cal Error Query the Error Queue (SY ST:ERR?)
See Error Messagesin Appendix B
page 335. Alsorun*TST?
-2 No results available No *CAL?or CAL:SETUP done

The C-SCPI type for this returned value isint16.

® Related Commands. CAL:SETup, *CAL?

Usage see CAL:SETup

188 HP E1415 Command Reference Chapter 6

CALibration

CALibration:STORe

CALibration:STORe <type> stores the most recently measured calibration
constants into Flash Memory (Electrically Erasable Programmable Read Only
Memory). When type=ADC, the module storesits A/D calibration constants as well
as constants generated from * CAL?/CAL:SETup into Flash Memory. When
type=TARE, the module stores the most recently measured CAL:TARE channel
offsetsinto Flash Memory.

Note TheHP E1415's Flash Memory has afinite lifetime of approximately ten
thousand write cycles (unlimited read cycles). While executing CAL:STOR
once every day would not exceed the lifetime of the Flash Memory for
approximately 27 years, an application that stored constants many times
each day would unnecessarily shorten the Flash Memory’s lifetime. See

Comments bel ow.
Parameters
Parameter Parameter Range of Default
Name Type Values Units
type discrete (string) ADC | TARE none
Comments ® The Flash Memory Protect jumper (JM2201) must be set to the enable position
before executing this command (See “Disabling Flash Memory Access
(optional)” on page 25.).
® Channel offsets are compensated by the CAL:TARE command even when not
stored in the Flash Memory. There is no need to use the CAL:STORE TARE
command for channels which are re-calibrated frequently.
* When Accepted: Not while INITiated
® Related Commands: CAL:VAL:RES, CAL:VAL:VOLT
® *RST Condition: Stored calibration constants are unchanged
Usage CAL:STORE ADC Store cal constantsin non-volatile
memory after A/D calibration
CAL:STORE TARE Sore channel offsetsin non-volatile

memory after channel tare

Command Storing A/D cal constants

Sequence _
q perform complete A/D calibration, then...

CAL:STORE ADC

Storing channel tare (offset) values

CAL:TARE <ch_list> to correct channel offsets
CAL:STORE TARE Optional depending on necessity of long
term storage

Chapter 6 HP E1415 Command Reference 189

CALibration

CALibration: TARE

Notes For
Thermocouples

CALibration:TARE (@<ch_list>) measures offset (or tare) voltage present on the
channels specified and stores the value in on-board RAM as a calibration constant
for those channels. Future measurements made with these channels will be
compensated by the amount of the tare value. Use CAL: TARE to compensate for
voltage offsetsin system wiring and residual sensor offsets. Where tare values need
to be retained for long periods, they can be stored in the module’s Flash Memory
(Electrically Erasable Programmable Read Only Memory) by executing the
CAL:STORe TARE command.

For more information See “Compensating for System Offsets” on page 106.

1. You must not use CAL:TARE on field wiring that is made up of

thermocouple wire. The voltage a thermocouple wire pair generates can not
be removed by introducing a short anywhere between its junction and its
connection to an isothermal panel (either the HP E1415's Terminal Module or
a remote isothermal reference block). Thermal voltage is generated along the
entire length of a thermocouple pair where there is any temperature gradient
along that length. To CAL:TARE thermocouple wire this way would

introduce an unwanted offset in the voltage/temperature relationship for that
channel. If you inadvertently CAL:TARE a thermocouple wire pair, use
CAL:TARE:RESET to reset all tare constants to zero.

. You shoulduse CAL:TARE to compensate wiring offsets (copper wire, not

thermocouple wire) between the HP E1415 and a remote thermocouple
reference block. Disconnect the thermocouples and introduce copper shorting
wires between each channel's HI and LO, then execute CAL:TARE for these
channels.

Parameters
Parameter Parameter Range of Default
Name Type Values Units
ch list channel list (string) 100 - 163 none
Comments ® CAL:TARE aso performs the equivalent of a* CAL? operation. This

operation uses the Tare constants to set a DAC which will remove each
channel offset as"seen" by the module’s A/D converter. As an example assume
that the system wiring to channel 0 generates a +0.1Volt offset with OVolts (a
short) applied at the Unit Under Test (UUT). Before CAL: TARE the module
would return areading of 0.1Voltsfor channel 0. After CAL:TARE (@100),
the module will return areading of OVolts with a short applied at the UUT and
the system wiring offset will be removed from all measurements of the signal
to channel 0.

* Set Amplifier/Filter SCP gain before CAL:TARE. For best accuracy, choose

the gain that will be used during measurements. If you decide to change the
range or gain setup later, be sure to perform another * CAL?.

190 HP E1415 Command Reference Chapter 6

CALibration

® |f Open TransducerDetect (OTD) isenabled when CAL: TARE is executed, the
module will disable OTD, wait 1 minute to allow channelsto settle, perform
the calibration, and then re-enable OTD. If your program turns off OTD before
executing CAL:TARE, it should also wait 1 minute for settling.

® The maximum voltage that CAL:TARE can compensate for is dependent on
the range chosen and SCP gain setting. The following table lists these values.

Maximum CAL:TARE Offsets
A/D range OffsetV | OffsetV | OffsetV Offset V
+V F.Scale Gain x1 | Gain x8 | Gain x16 Gain x64
16 3.2213 140104 .20009 .04970
4 .82101 .10101 .05007 .01220
1 .23061 .02721 .01317 .00297
.25 .07581 .00786 .00349 .00055
.0625 .03792 .00312 .00112 n/a

® Channel offsets are compensated by the CAL: TARE command even when not
stored in the Flash Memory. There is no need to use the CAL:STORE TARE
command for channels which are re-calibrated frequently.

® The HP E1415's Flash Memory has afinite lifetime of approximately ten
thousand write cycles (unlimited read cycles). While executing CAL:STOR
once every day would not exceed the lifetime of the Flash Memory for
approximately 27 years, an application that stored constants many times each
day would unnecessarily shorten the Flash Memory’s lifetime. See Comments

below.

® Executing CAL:TARE setsthe Calibrating bit (bit 0) in Operation Status
Group. Executing CAL: TARE? resets the bit.

* When Accepted: Not while INITiated

® Related Commands; CAL: TARE?, CAL:STOR TARE

® *RST Condition: Channd offsets are not affected by * RST.

Command CAL:TARE <ch_list>

Sequence

CAL:TARE?

CAL:STORE TARE

CALibration: TARE:RESet

to correct channel offsets

to return the success flag from the
CAL:TARE operation

Optional depending on necessity of long
term storage

CALibration: TARE:RESet resets the tare calibration constants to zero for al

64 channels. Executing CAL: TARE:RES affectsthetarecal constantsin RAM only.
To reset the tare cal constants in Flash Memory, execute CAL: TARE:RES and then
execute CAL:STORE TARE.

Chapter 6

HP E1415 Command Reference

191

CALibration

Command CAL:TARE:RESET to reset channel offsets

Sequence CAL:STORE TARE Optional if necessary to reset tare cal
constants in Flash Memory.

CALibration: TARE?

CALibration: TARE? Returnsavalue to indicate the success of thelast CAL: TARE
operation. CAL:TARE? returns the value only after the CAL: TARE operation is
complete.

® Returned Value:

Value M eaning Further Action
0 Cal OK None
-1 Cal Error Query the Error Queue (SY ST:ERR?)

See Error Messagesin Appendix B
page 335. Also run *TST?

-2 No results available Perform CAL:TARE
before CAL:TARE?

The C-SCPI type for this returned value isint16.

® Executing CAL:TARE sets the Calibrating bit (bit 0) in Operation Status
Group. Executing CAL: TARE? resets the bit.

* Related Commands; CAL:STOR TARE

Command CAL:TARE <ch list> to correct channel offsets
Sequence CALTARE? to return the success flag from the
CAL:TARE operation
CAL:STORE TARE Optional depending on necessity of long
term storage

CAlLibration:VALue:RESistance

CALibration:VALue:RESistance <ref ohms> sends the just-measured value of
the on-board reference resistor to the module for A/D calibration.

Parameters
Parameter Parameter Range of Default
Name Type Value Units
ref_ohms numeric (float32) 7,500 + 5% ohms
Comments ® ref_ohms must be within 5% of the nominal reference resistor value (7,500

Ohmes) and may be specified in Kohm (kohm).

* A four-wire measurement of the resistor can be made with an external

192 HP E1415 Command Reference Chapter 6

CALibration

multimeter connected to theH Cal, L Cal, H ohm, and L ohm terminals on

the Terminal Module, or theV H, V L, Q H, and Q L terminals on the Ca Bus
connector.

® Usethe CAL:CONF:RES command to configure the reference resistor for
measurement at the Calibration Bus connector.

®* When Accepted: Not while INITiated
® Related Commands; CAL:CONF:RES, CAL:STORE ADC
Command CAL:CONF:RES

Sequence (now measure ref resistor with external DMM)
CAL:VAL:RES <measured value> Send measured value to module

CALibration:VALue:VOLTage

CALibration:VALue:VOLTage <ref_volts> sendsthe value of the just-measured
DC reference source to the module for A/D calibration.

Parameters
Parameter Parameter Range of Default
Name Type Values Units
ref_volts numeric (float32) | must be within 10% of range nominal volts
Comments

® The value sent must be for the currently configured range and output (zero or
full scale) as set by the previous CAL:CONF:VOLT <range>, ZERO |
FSCale command. Full scale values must be within 10% of .0625, .25, 1, 4, or
10 (the voltage reference provides 10V DC on the 16V range).

* ref volts may be specified in millivolts (mv).
® A measurement of the source voltage can be made with an external multimeter
connected to the H Cal, and L Cal terminals on the Terminal Module, or the

V H, and V L terminals on the Cal Bus connector.

® Usethe CAL:CONF:VOLT command to configure the on-board voltage
source for measurement at the Calibration Bus connector.

* When Accepted: Not while INITiated
* Related Commands; CAL:CONF:VOLT, CAL:STORE ADC

Command CAL:CONF:VOLTAGE 4,FSCALE
Sequence *OPC? Wiait for operation to complete

enter statement

(now measure voltage with external DMM)

Chapter 6 HP E1415 Command Reference 193

CALibration

CAL:VAL:VOLT <measured value> Send measured value to module

CAlLibration:ZERO?

CALibration:ZERO? corrects Analog to Digital converter offset for any drift since
thelast * CAL?or CAL:ZERO?command was executed. The offset calibration takes
about 5 seconds and should be done as often as you control set up allows.

Comments ® The CAL:ZERO? command only corrects for A/D offset drift (zero). Use the
* CAL? common command to perform on-line calibration of channels as well
as A/D offset. * CAL? performs gain and offset correction of the A/D and each
channel with an analog SCP installed (both input and output).

® Returned Value:

Value M eaning Further Action
0 Cal OK None
-1 Ca Error Query the Error Queue (SY ST:ERR?)
See Error Messagesin Appendix B
page 335

The C-SCPI type for thisreturned valueisint16.

® Executing this command does not alter the module's programmed state
(function, range etc.).

® Related Commands; *CAL?

® *RST Condition: A/D offset performed

Usage CAL:ZERO?
enter statement here returnsOor -1

194 HP E1415 Command Reference Chapter 6

DIAGnostic

The DIAGnostic subsystem allows you to perform special operations that are not
standard in the SCPI language. This includes checking the current revision of the
Control Processor’'sfirmware, andthat it hasbeen properly loaded into Flash Memory.

Subsystem Syntax DIAGnostic
:CALibration
:SETup
‘MODE 01
:MODE?
‘TARe
[[OTD]
:MODE 01
:MODE?
:CHECksum?
:CUSTom
:LINear <table_range>,<table_block>,(@<ch_list>)
:PIECewise <table range>,<table block>,(@<ch_list>)
:REFerence
:TEMPerature
:FLOor[:CONFigure] <range>,(@ch_list>)
:DUMP
JdEEE 1|0
IEEE?
INTerrupt
[:LINe] <intr_line>
[:LINe]?
:OTDetect
[[STATe] 1|0 | ON | OFF,(@<ch_list>)
[[STATe]? (@<channel>)
:QUERY
:SCPREAD? <reg_addr>
'VERSion?

DIAGnostic:CALibration:SETup[:MODE]

DIAGnostic:CALibration:SETup[:MODE] <mode> sets the type of calibration to
use for analog output SCPs like the HP E1531 and HP E1532 when * CAL? or
CAL:SET are executed.

Parameters
Parameter Parameter Range of Default
Name Type Values Units
mode boolean (uint 16) 0|1 volts

Chapter 6 HP E1415 Command Reference 195

DIAGnhostic

Comments ® When <mode> is set to 1 (the * RST Default) channels are calibrated using the
L east Squares Fit method to provide the minimum error overall (over the entire
output range). When <mode> is 0, channels are calibrated to provide the
minimum error at their zero point. See your SCPs User's Manual for its
accuracy specifications using each mode.

®* Related Commands; *CAL?, CAL:SET, DIAG:CAL:SET:MODE?

® *RST Condition: DIAG:CAL:SET:MODE 1

Usage setanalog DAC SCP cal mode for best zero accuracy
DIAG:CAL:SET:MODE 0 set mode for best zero cal
*CAL? start channel calibration

DIAGnostic:CALibration:SETup[:MODE]?

DIAGnostic:CALibration:SETup[:MODE]? returns the currently set calibration
mode for analog output DAC SCPs.

Comments ® Returns a1 when channels are calibrated using the Least Squares Fit method to
provide the minimum error overall (over the entire output range). Returns a0
when channels are calibrated to provide the minimum error at their zero point.
See your SCPs User's Manual for its accuracy specifications using each mode.
The C-SCPI typeisint16.

* Related Commands: DIAG:CAL:SET:MOD, *CAL?, CAL:SET

¢ *RST Condition: DIAG:CAL:SET:MODE 1

DIAGnostic:CALibration: TARE[:OTDetect]:MODE

DIAGnostic:CALibration: TARE[:OTDetect]:MODE <mode> sets whether Open
Transducer Detect current will be turned off or |eft on (the default mode) during the
CAL:TARE operation.

Parameters
Par ameter Parameter Range of Default
Name Type Values Units
mode boolean (uint 16) 0|1 volts
Comments ® \When <mode> is set to 0 (the * RST Default), channels are tare calibrated with

their OTD current off. When <mode> is 1, channels that have their OTD
current on (DIAGnostic:OTDetect ON,(@<ch_list>)) are tare calibrated with
their OTD current left on.

® By default (*RST) the CALibration: TARE? command will calibrate all
channels with the OTD circuitry disabled. Thisis done for two reasons: first,
most users do not leave OTD enabled while taking readings, and second, the
CALibration: TARE? operation takes much longer with OTD enabled.

196 HP E1415 Command Reference Chapter 6

DIAGnostic

However, for users who intend to take readings with OTD enabled, setting
DIAG:CAL: TARE:OTD:MODE to 1, will forcethe CAL:TARE? command to
perform calibration with OTD enabled on channels so specified by the user
with the DIAG:OTD command.

®* Related Commands; *CAL?, CAL:SET, DIAG:CAL:SET:MODE?

® *RST Condition: DIAG:CAL:TARE:MODE 0

Usage configure OTD on during CAL:TARE
DIAG:CAL:TARE:MODE 1 set mode for OTD to stay on
CAL:TARE? start channel tare cal.

DIAGnostic:CALibration: TARE[:OTDetect]:MODE?

DIAGnostic:CALibration: TARE[:OTDetect]:MODE? returns the currently set
modefor controlling Open Transducer Detect current whileperforming CAL: TARE?

operation.

Comments ® Returnsa0 when OTD current will be turned off during CAL: TARE?. Returns
1 when OTD current will be left on during CAL:TARE? operation. The

C-SCPI typeisint16.
®* Related Commands: DIAG:CAL:TARE:MOD, DIAG:OTD, CAL:TARE?

® *RST Condition: DIAG:CAL:TARE:MODE 0

DIAGnostic:CHECksum?

DIAGnostic:CHECksum? performs a checksum operation on Flash Memory. A
returned valueof 1indicatesthat Flash memory contentsarecorrect. A returned value
of 0 indicates that the Flash Memory is corrupted, or has been erased.

Comments ® Returned Value: Returns 1 or 0. The C-SCPI typeisint16.

Usage DIAG:CHEC? Checksum Flash Memory, return 1 for
OK, 0O for corrupted

DIAGnostic:CUSTom:LINear

DIAGnostic:CUSTom:LINear <table_range>,<table block>, (@<ch_list>)
downloads a custom linear Engineering Unit Conversion table (in <table_block>) to
theHP E1415. Contact your Hewl ett-Packard System Engineer for moreinformation
on Custom Engineering Unit Conversion for your application.

Chapter 6 HP E1415 Command Reference 197

DIAGnhostic

Parameters

Comments

Usage

Par ameter Parameter Range of Default
Name Type Values Units
table range numeric (float32) | .015625|.03125|.0625|.125|.25|.5|1 | valts
[2]14]18]16]32|64
table block | definitelengthblock see comments none
data
ch list channel list (string) 100 - 163 none

® <table_block> isablock of 8 bytesthat define 4, 16-bit values. SCPI requires
that <table_block> include the definite length block data header. C-SCPI adds
the header for you.

® <table range> specifies the range of voltage that the table covers (from
-<table range>to +<table range>). The vaue you specify must be within 5%
of one of the nominal values from the table above.

® <ch_list> specifies which channels may use this custom EU table
® Related Commands: [SENSe]FUNCtion:CUSTom

* *RST Condition: All custom EU tables erased

program puts table constants into array table_block

DIAG:CUST:LIN table_block,(@116:123) send table to HP E1415 for chs 16-23
SENS:FUNC:CUST:LIN 1,1,(@116:123) link custom EU with chs 16-23
INITiate then TRIGger module

DIAGnostic:CUSTom:PIECewise

Parameters

Comments

DIAGnostic:CUSTom:PIECewise <table _range>,<table block>, (@<ch_list>)
downloads a custom piece wise Engineering Unit Conversion table (in

<table block>) to the HP E1415. Contact your Hewlett-Packard System Engineer
for more information on Custom Engineering Unit Conversion for your application.

Par ameter Parameter Range of Default
Name Type Values Units
table range numeric (float32) | .015625|.03125|.0625|.125|.25|.5] | volts
112]14|8]16|32|64
table block | definitelengthblock see comments none
data
ch list channel list (string) 100 - 163 none

*® <table block>isablock of 1,024 bytesthat define 512 16-bit values. SCPI
requires that <table_block> include the definite length block data header.
C-SCPI adds the header for you.

198 HP E1415 Command Reference

Chapter 6

DIAGnostic

® <table range> specifies the range of voltage that the table covers (from
-<table range> to +<table range>).

® <ch_list> specifieswhich channels may use this custom EU table.
® Related Commands: [SENSe]FUNCtion:CUSTom

* *RST Condition: All custom EU tables erased.

Usage program puts table constants into array table_block
DIAG:CUST:PIEC table_block,(@124:131) send table for chs 24-31 to HP E1415
SENS:FUNC:CUST:PIEC 1,1,(@124:131) link custom EU with chs 24-31
INITiate then TRIGger module

DIAGnostic:CUSTom:REFerence: TEMPerature

DIAGnostic:CUSTom:REFerence: TEMPerature extracts the current Reference
Temperature Register Contents, convertsit to 32-bit floating point format and sends
it to the FIFO. This command is used to verify that the reference temperature is as
expected after measuring it using a custom reference temperature EU conversion
table.

Usage your program must have EU table values stored in table_block

download the new reference EU table

DIAG:CUST:PIECEWISE <table_range>,<table_block>,(@<ch_list>)
designate channel as reference

SENS:FUNC:CUST:REF <range>,(@<ch_list>)
set up scan list sequence (ch 0 in this case)

Now run the algorithm that uses the custom reference conversion table
dump reference temp register to FIFO

DIAG:CUST:REF. TEMP
read the diagnostic reference temperature value

SENS:DATA:FIFO?

DIAGnostic:FLOor[:CONFigure]

DIAGnostic:FLOor[:CONFigure] <range>,(@<ch_list>) setsthelowest rangethat
can be selected by auto range on channels specified in <ch _list>.

Parameters
Parameter Parameter Range of Default
Name Type Values Units
range numeric (float32) See comments VDC
ch list channel list (string) 100 - 163 none
Comments ® There are rare circumstances where your input signal can be difficult for the

HP E1415 to auto range correctly. The module completes the range selection
based on your input signal about 6 psec before the actual measurement is made
on that channel. If during that period your signal becomes greater than the

Chapter 6 HP E1415 Command Reference 199

DIAGnhostic

selected range can handle, the module will return an overflow reading
(xINFinity). By locking-out that range (and lower ranges) for this channel, the
module can continue to auto-range and still avoid the overflow reading
condition.

® The <range> parameter: The HP E1415 has five ranges: .0625VDC, .25V DC,
1VDC, 4VDC, and 16VDC. To select arange, simply specify the range value
(for example, 4 selects the 4VDC range). If you specify avalue larger than
one of the first four ranges, the HP E1415 selects the next higher range (for
example, 4.1 selectsthe 16V DC range). Specifying avalue larger than 16
causes an error. Specifying 0 selects the lowest range (.0625V DC).

® Once a channel’s auto range floor is set by DIAG:FLOOR, it remains until
reset by another DIAG:FLOOR command or the *RST command.

® A channel with an auto range floor can be manually ranged below the floor
(SENS:FUNC... commands). When the channel is returned to auto range, the
auto range floor setting is still in effect.

* Related Commands: DIAG:FLOOR:DUMP?, SENS:FUNC...

® Power-on and *RST Condition: DIAG:FLOOR .0625,(@100:163)

Usage DIAG:FLOOR .25,(@100:104) channels 0-4 can range no lower than .25

DIAGnostic:FLOor:DUMP

DIAGnostic:FLOor:DUMP placesthe auto range floor valuefor all 64 channelsinto
the FIFO.

Comments ® The format of the values returned from the FIFO with a SENS:DATA?
command will depend on the format chosen with the FORMat[:DATA]
command.

® Related commands: DIAG:FLOor, FORMat[:DATA], SENS:FUNC...

DIAGnostic:IEEE

DIAGnostic:IEEE <mode> enables (1) or disables (0) IEEE-754 NAN (Not A
Number) and £INF value outputs. This command was created for the HP VEE

platform.
Parameters
Parameter Parameter Range of Default
Name Type Values Units
mode boolean (uint 16) 0|1 volts
Comments * \When <mode> is set to 1, the module can return =INF and NAN vaues

200 HP E1415 Command Reference Chapter 6

DIAGnostic

according to the IEEE-754 standard. When <mode> is set to 0, the module
returns values as +9.9E37 for INF and 9.91E37 for NAN.

* Related Commands: DIAG:IEEE?

* *RST Condition: DIAG:IEEE 1

Usage Set IEEE mode

DIAG:IEEE 1 INF values returned in |EEE standard

DIAGnostic:IEEE?

DIAGnostic:IEEE? returnsthe currently set IEEE mode.

Comments ® The C-SCPI typeisint16.
* Related Commands: DIAG:IEEE

* *RST Condition: DIAG:IEEE 1

DIAGnostic:INTerrupt[:LINe]

DIAGnostic:INTerrupt[:LINe] <intr_line> setsthe VXIbusinterrupt line the
module will use.

Parameters
Parameter Parameter Range of Default
Name Type Values Units
intr_line numeric (int16) 0 through 7 none

Comments * Related Commands: DIAG:INT:LINE?

® Power-on and *RST Condition: DIAG:INT:LINE 1

Usage DIAG:INT.LINE 5 Module will interrupt on interrupt line 5

DIAGnostic:INTerrupt[:LINe]?

DIAGnostic:INTerrupt[:LINe]? returnsthe V Xlbusinterrupt line that the moduleis
Set to use.

Comments ® Returned Value: Numeric 0 through 7. The C-SCPI typeisint16.

® Related Commands; DIAG:INT:LINE

Usage DIAG:INT? Enter statement will return O through 7

Chapter 6 HP E1415 Command Reference 201

DIAGnhostic

DIAGnostic:OTDetect[:STATe]

DIAGnostic:OTDetect[:STATe] <enable>,(@<ch_list>) enables and disables the
HP E1415's" Open Transducer Detection™ capability (OTD). When Open Transducer
Detection is enabled, a very high impedance path connects all SCP channelsto a
voltage source greater than 16 volts. If an enabled channel has an open transducer,
the input signal becomes the source voltage and the channel returns an input
over-range value. The value returned is +9.91E+37 (ASCI|I).

Parameters
Parameter Parameter Range of Default
Name Type Values Units
enable boolean (uint16) 1|0|ON | OFF none
ch list channel list (string) 100 - 163 none
Comments ® Open Transducer Detection is enabl ed/disabled on a whole Signal

Conditioning Plug-on basis. Selecting any channel on an SCP selects all
channels on that SCP (8 channels per SCP).

®* The DIAG:CAL:TARE:MODE <mode> command affects how OTD is
controlled during the CAL: TARE? operation. When <mode> is set to 0 (the
*RST Default), channels are tare calibrated with their OTD current off. When
<mode> is 1, channels that have their OTD current on

(DIAGnNostic:OTDetect ON,(@<ch_list>)) are tare calibrated with their OTD
current left on.

* Related Commands: DIAG:OTDETECT:STATE?,
DIAG:CAL:TARE:MODE

Note *RST Condition: DIAG:OTDETECT OFF

If OTD isenabled when* CAL?, or CAL:TARE isexecuted, the modulewill disable
OTD, wait 1 minute to allow channels to settle, perform the calibration, and then

re-enable OTD.

Usage DIAG:OTD ON,(@100:107,115:123) select OTD for thefirst and third SCP
(complete channel lists for readability
only)

DIAG:OTD:STATE ON,(@100,115) same function as example above (only

first channel of each SCP specified)

DIAG:OTDETECT:STATE OFF,(@108) disable OTD for the 8 channels on the
second SCP (only first channel of SCP
specified)

DIAGnostic:OTDetect[:STATe]?

DIAGnostic:OTDetect[:STATe]? (@<channel>) returnsthe current state of "Open
Transducer Detection” for the SCP containing the specified channel.

202 HP E1415 Command Reference Chapter 6

DIAGnostic

Parameters
Parameter Parameter Range of Default
Name Type Values Units
channel channel list (string) 100 - 163 none
Comments ® channel must specify asingle channel only.
® Returned Value: Returns 1 (enabled) or O (disabled). The C-SCPI typeis
int16.
* Related Commands: DIAG:OTDETECT:STATE ON | OFF
Usage DIAG:OTD:STATE? (@108) enter statement returnseither alor a0

DIAGnostic:QUERY:SCPREAD?

DIAGnostic:QUERY:SCPREAD? <reg_addr> returns dataword from a Signal
Conditioning Plug-on register.

Parameters
Parameter Parameter Range of Default
Name Type Values Units
reg_addr numeric (int32) 0-65,535 none
Comments ®* NOTE: Thiscommand may not be used while instrument is INITed.
® Returned Value: returns numeric register value. C-SCPI typeisint32.
Usage DIAG:QUERY:SCPREAD? 258 read Watchdog SCP's config/status
register
enter statement here return SCP ID value

DIAGnostic:VERSIion?

DIAGnostic:VERSIion? returns the version of the firmware currently loaded into
Flash Memory. The version information includes manufacturer, model, serial
number, firmware version and date.

Comments ® Returned Value: Examples of the response string format:
HEWLETT-PACKARD,E1415,US34000478,A.04.00,Thu Aug 5 9:38:07 MDT 1994

® The C-SCPI typeisstring.

®* Related Commands; *IDN?

Usage DIAG:VERS? Returns version string as shown above

Chapter 6 HP E1415 Command Reference 203

FETCh?

Subsystem Syntax FETCh? returns readings stored in VME memory.

Comments ® Thiscommand is only available in systems using an HP E1405B or
HP E1406A command module.

® FETCH? does not alter the readings stored in VME memory. Only the* RST or
INIT... commands will clear the readingsin VME memory.

® The format of readings returned is set using the FORMat[:DATA] command.

® Returned Value: REAL,32, REAL,64, and PACK 64, readings are returned in
the IEEE-488.2-1987 Definite Length Arbitrary Block Data format. This data
return format is explained in “Arbitrary Block Program and Response Data”
on page 160. For REAL,32, readings are 4 bytes in length. For REAL 64, and
PACK, 64, readings are 8 bytes in length.

®* PACKed,64 returns the same values as REAL,64 except for Not-a-Number
(NaN), IEEE +INF and |EEE -INF. The NaN, |IEEE +INF and |IEEE -INF
values returned by PACKed,64 arein a form compatible with HP Workstation
BASIC and HP BASIC/UX. Refer to the FORMat command for the actual
vauesfor NaN, +INF, and -INF.

® ASCii isthe default format.

® ASCII readingsare returned in the form £1.234567E+123. For example 13.325
volts would be +1.3325000E+001. Each reading isfollowed by acommal(,). A
linefeed (LF) and End-Or-ldentify (EQI) follow the last reading.

® Related Commands: MEMory Subsystem, FORMat[:DATA]

¢ *RST Condition: MEMORY:VME:ADDRESS 240000;
MEMORY:VME:STATE OFF; MEMORY:VME:SIZE 0

204 HP E1415 Command Reference Chapter 6

FETCh?

Use Sequence MEM:VME:ADDR #H300000
MEM:VME:SIZE #H100000 1M byte or 262144 readings
MEM:VME:STAT ON

*

*(set up E1415 for scanning)

*

TRIG:SOUR IMM let unit trigger on INIT

INIT program execution remains here until
VME memory isfull or theHP E1415 has
stopped taking readings

FORM REAL,64 affects only the return of data

FETCH?

Note When using the MEM subsystem, the module must be triggered before
executing the INIT command (as shown above) unless you are using an
external trigger (EXT trigger). When using EXT trigger, the trigger can
occur at any time.

Chapter 6 HP E1415 Command Reference 205

FORMat

The FORMat subsystem provides commands to set and query the response data
format of readings returned using the [SENSe:]DATA:FIFO:...? commands.

Subsystem Syntax FORMat

[:DATA] <format>[,<size>]
[:DATA]?

FORMat[:DATA]

FORMat[:DATA] <format>[,<size>] sets the format for data returned using the
[SENSe:]DATA:FIFO:...?, [SENSe]DATA:CVTable, and FETCh? commands.

Parameters
Parameter Parameter Range of Default
Name Type Values Units
format discrete (string) REAL | ASCii | PACKed none
size numeric for ASCii, 7 none
for REAL, 32|64
for PACKed, 64

Comments ®* The REAL format is |IEEE-754 Floating Point representation.

®* REAL, 32 provides the highest data transfer performance since no format
conversion step is placed between reading and returning the data. The default
sizefor the REAL format is 32 bits. Also see DIAG:IEEE command.

® PACKed, 64 returns the same values as REAL, 64 except for Not-a-Number
(NaN), IEEE +INF and |IEEE -INF. The NaN, IEEE +INF and |IEEE -INF
values returned by PACKed,64 arein a form compatible with HP Workstation
BASIC and HP BASIC/UX (seetable on following page).

®* REAL 32, REAL 64, and PACK 64, readings are returned in the
|EEE-488.2-1987 Arbitrary Block Data format. The Block Data may be either
Definite Length or Indefinite Length depending on the data query command
executed. These data return formats are explained in “Arbitrary Block Program
and Response Data” on page 160. For REAL 32, readings are 4 bytes in length
(C-SCPI type idloat32 array). For REAL 64, and PACK, 64, readings are 8
bytes in length (C-SCPI type filwat64 array).

® ASCii isthe default format. ASCII readings are returned in the form
+1.234567E+123. For example 13.325 volts would be +1.3325000E+001.
Each reading isfollowed by acommal(,). A linefeed (LF) and End-Or-Identify
(EQI) follow the last reading (C-SCPI typeis string array).

206 HP E1415 Command Reference Chapter 6

FORMat

Note *TST?leavestheinstrument in itspower-on reset state. This meansthat the
ASC,7 dataformat is set even if you had it set to something else before
executing * TST?. If you need to read the FIFO for test information, set the
format after * TST? and before reading the FIFO.

® Related Commands. [SENSe]DATA:FIFO....?, [SENSe]DATA:CV Table?,
MEMory subsystem, and FETCh?, Also see how DIAG:IEEE can modify
REAL,32 returned values.

® *RST Condition: ASCII, 7

® After *RST/Power-on, each channel location inthe CVT contains the
|EEE-754 value "Not-a-number" (NaN). Channel readings which are a
positive overvoltage return |EEE +INF and anegative overvoltage return IEEE
-INF. TheNaN, +INF, and -INF values for each format are shown in the

following table.

Format |IEEETerm Value M eaning

ASCii +INF +9.9E37 Positive Overload
-INF -9.9E37 Negative Overload

NaN +9.91E37 No Reading
REAL,32 +INF 7F8000004¢ Positive Overload
-INF FF800000,¢ Negative Overload

NaN TFFFFFFF g No Reading
REAL,64 +INF 7FF000...004 Positive Overload
-INF FFF000..00,¢ Negative Overload

NaN TFFFFF...FFg No Reading
PACKed,64 +INF 47D2 9EAD 3677 AF6F (+9.0e374q) | Positive Overload
-INF C7D2 9EAD 3677 AF6F5 (-9.0e3740) | Negative Overload

NaN 47D2 A37D CED4 61434 (+9.91€37:() No Reading

Usage FORMAT REAL
FORM REAL, 64
FORMAT ASCII, 7

FORMat[:DATA]?

Table 6-1. Data Formats

Set format to |EEE 32-bit Floating Point
Set format to | EEE 64-bit Floating Point
Set format to 7-bit ASCII

FORMat[:DATA]? returns the currently set response data format for readings.

Comments ® Returned Value: Returns REAL, +32 | REAL, +64 | PACK, +64 | ASC, +7.

Chapter 6

HP E1415 Command Reference

207

FORMat
The C-SCPI typeisstring, int16.
* Related Commands: FORMAT

® *RST Condition: ASCII, 7

Usage FORMAT? ReturnsREAL, +32 | REAL, +64 | PACK,
+64 | ASC, +7

208 HP E1415 Command Reference Chapter 6

INITiate

The INITiate command subsystem moves the HP E1415 from the Trigger Idle State
to the Waiting For Trigger State. When initiated, the instrument is ready to receive
one (:IMMediate) or more (depending on TRIG:COUNT) trigger events. On each
trigger, themodulewill perform onecontrol cyclewhichincludesreading analog and
digital input channels (Input Phase), executing all defined algorithms (Calculate
Phase), and updating output channels (Output Phase). Seethe TRIGger subsystemto
specify the trigger source and count.

Subsystem Syntax INITiate
[:IMMediate]

INITiate[:IMMediate]

INITiate[:IMMediate] changes the trigger system from the Idle state to the Wait For
Trigger state. When triggered, one or more (depending on TRIGger: COUNT) trigger
cycles occur and the instrument returns to the Trigger Idle state.

Comments ® INIT:IMM clearsthe FIFO and Current Value Table.

® |f atrigger event is received before the instrument is Initiated, a-211 "Trigger
ignored" error is generated.

® |f another trigger event is received before the instrument has completed the
current trigger cycle (measurement scan), the Questionable Data Status bit 9 is
set and a+3012 "Trigger too fast" error is generated.

® Sending INIT while the system is still in the Wait for Trigger state (already
INITiated) will cause an error -213,"Init ignored".

® Sending the ABORt command send the trigger system to the Trigger Idle state
when the current input-cal culate-output cycle is completed.

* |f updates are pending, they are made prior to beginning the Input phase.
* When Accepted: Not while INITiated
® Related Commands: ABORt, CONFigure, TRIGger

® *RST Condition: Trigger systemisinthe ldle state.

Usage INIT Both versions same function
INITIATE:IMMEDIATE

Chapter 6 HP E1415 Command Reference 209

INPut

The INPut subsystem controls configuration of programmable input Signal
Conditioning Plug-Ons (SCPs).

Subsystem Syntax INPut
‘FILTer
[:LPASS]
:FREQuency <cutoff freq>,(@<ch_list>)
:FREQuency? (@<channel>)
[:STATe] 1|0 | ON | OFF,(@<channel>)
[:STATe]? (@<channel>)
:GAIN <chan_gain>,(@<ch_list>)
:GAIN? (@<channel>)
LOW <wvolt_type>,(@<ch_list>)
LOW? (@<channel>)
:POLarity NORMal | INVerted,(@<ch_list>)
:POLarity? (@<channel>)

INPut:FILTer[:LPASs]:FREQuency

INPut:FILTer[:LPASs]:FREQuency <cutoff_freq>,(@<ch_list>) setsthe cutoff
frequency of the filter on the specified channels.

Parameters
Parameter Parameter Range of Default
Name Type Values Units
cutoff freq numeric (float32) see comment | Hz
(string) MIN | MAX
ch list channel list (string) 100 - 163 none

Comments * cutoff_freq may be specified in killoHertz (khz). A programmable Filter SCP
has a choice of several discrete cutoff frequencies. The cutoff frequency set
will be the one closest to the value specified by cutoff freq. Refer to Chapter 6
for specific information on the SCP you are programming.

*® Sending MAX for the cutoff_freq selects the SCP's highest cutoff frequency.
Sending MIN for the cutoff _freq selects the SCP's lowest cutoff frequency. To

disablefiltering (the "pass through" mode), execute the INP:FILT:STATE
OFF command.

® Sending avalue greater than the SCP's highest cutoff frequency or lessthan the
SCP's lowest cutoff frequency generates a-222 "Data out of range” error.

® When Accepted: Not while INITiated

* Related Commands: INP:FILT:FREQ?, INP:FILT:STAT ON | OFF

210 HP E1415 Command Reference Chapter 6

Usage

® *RST Condition: setto MIN

INP:FILT:FREQ 100,(@100:119)

INPUT:FILTER:FREQ 2,(@155)

INPut:FILTer[:LPASs].FREQuency?

INPut

Set cutoff frequency of 100 Hz for first 20

channels

Set cutoff frequency of 2 Hz for channel

55

Parameters

Comments

Usage

INPut:FILTer[:LPASs]:FREQuency? (@<channel>) returns the cutoff frequency
currently set for channel. Non-programmable SCP channels may be queried to
determine their fixed cutoff frequency. If the channel is not on an input SCP, the
query will return zero.

Parameter Parameter Range of Default
Name Type Values Units
channel channel list (string) 100 - 163 none

® channel must specify asingle channel only.

® Thiscommand is for programmable filter SCPs only.

® Returned Value: Numeric value of Hz as set by the INP.FILT:FREQ

command. The C-SCPI typeisfloat32.

® \When Accepted: Not while INITiated

® Related Commands: INP:FILT:LPAS.FREQ, INP:FILT:STATE

® *RST Condition: MIN

INPUT:FILTER:LPASS:FREQUENCY? (@155heck cutoff freq on channel 55
INP:FILT:FREQ? (@100)

INPut:FILTer[:LPASs][:STATe]

Check cutoff fregq on channel 0

Parameters

INPut:FILTer[:LPASS][:STATe] <enable>,(@<ch_list>) enables or disablesa

programmablefilter SCP channel. When disabl ed (enable=OFF), these channels are
intheir " passthrough" modeand providenofiltering. When re-enabled (enable=ON),
the SCP channel revertsto its previously programmed setting.

Parameter Parameter Range of Default
Name Type Values Units
enable boolean (uint16) 1|0|ON | OFF none
ch list channel list (string) 100 - 163 none

Chapter 6

HP E1415 Command Reference 211

INPut

Comments ® |f the SCP has not yet been programmed, ON enables the SCP's default cutoff
frequency.

* When Accepted: Not while INITiated

* *RST Condition: ON

Usage INPUT:FILTER:STATE ON,(@115,117) Channels 115 and 117 return to
previously set (or default) cutoff

frequency
INP:FILT OFF,(@100:115) Set channels 0-15 to "pass-through” state

INPut:FILTer[:LPASs][:STATe]?

INPut:FILTer[LPASS][:STATe]? (@<channel>) returnsthe currently set state of
filtering for the specified channel. If the channel is not on an input SCP, the query
will return zero.

Parameters
Parameter Parameter Range of Default
Name Type Values Units
channel channel list (string) 100 - 163 none
Comments ® Returned Value: Numeric value either O (off or "pass-through") or 1 (on). The

C-SCPI typeisint16.

® channel must specify a single channel only.

Usage INPUT:FILTER:LPASS:STATE? (@115) Enter statement returns either O or 1

INP:FILT? (@115) Same as above
INPut: GAIN
INPut:GAIN <gain>,(@<ch_list>) setsthechannel gainon programmableamplifier
Signal Conditioning Plug-Ons.
Parameters
Parameter Parameter Range of Default
Name Type Values Units
gain numeric (float32) see comment | none
discrete (string) MIN | MAX
ch list channel list (string) 100 - 163 none
Comments ® A programmable amplifier SCP has a choice of several discrete gain settings.

The gain set will be the one closest to the value specified by gain. Refer to
your SCP manual for specific information on the SCP you are programming.
Sending MAX will program the highest gain available with the SCP installed.

212 HP E1415 Command Reference Chapter 6

INPut

Sending MIN will program the lowest gain.

® Sending avalue for gain that is greater than the highest or less than the lowest
setting allowable for the SCP will generate a-222 "Data out of range" error.

® \When Accepted: Not while INITiated
* Related Commands: INP:GAIN?

® *RST Condition: gain set to MIN

Usage INP:GAIN 8,(@100:119) Set gain of 8 for first 20 channels
INPUT:GAIN 64,(@155) Set gain of 64 for channel 55
INPut: GAIN?
INPut:GAIN? (@<channel>) returnsthe gain currently set for channel. If the
channel is not on an input SCP, the query will return zero.
Parameters
Parameter Parameter Range of Default
Name Type Values Units
channel channel list (string) 100 - 163 none
Comments ® channel must specify asingle channel only.
® |f the channel specified does not have a programmable amplifier, INP.GAIN?
will return the nominal as-designed gain for that channel.
® Returned Value: Numeric value as set by the INP.GAIN command. The
C-SCPI typeisfloat32.
® \When Accepted: Not while INITiated
® Related Commands: INP:GAIN
® *RST Condition: gainsetto 1
Usage INPUT:GAIN? (@105) Check gain on channel 5
INP:GAIN? (@100) Check gain on channel 0
INPut:LOW

INPut:LOW <wvolt_type>,(@<ch_list>) controls the connection of input LO at a
Strain Bridge SCP channel specified by <ch_list>. LO can be connected to the
Wagner Voltage ground or left floating.

Chapter 6

HP E1415 Command Reference 213

INPut

Parameters
Parameter Parameter Range of Default
Name Type Values Units
wvolt_type discrete (string) FLOat | WVOLtage none
ch list channel list (string) 100 - 163 none
Comments ® Related Commands: INP.LOW?
® *RST Condition: INP.LOW FLOAT (all Option 21 channels)
Usage INP:.LOW WVOL (@100:103,116:119) connect LO of channels 0 through 3 and
16 through 19 to Wagner Ground.
INPut:LOW?
INPut:LOW? (@<channel>) returnsthe LO input configuration for the channel
specified by <channel>.
Parameters
Parameter Parameter Range of Default
Name Type Values Units
channel channel list (string) 100 - 163 none
Comments ® channel must specify asingle channel only.
® Returned Value: Returns FLO or WV. The C-SCPI type is string.
® Related Commands: INP:LOW
Usage INP.LOW? (@103) enter statement will return either FLO or

INPut:POLarity

WV for channel 3

Parameters

Comments

INPut:POLarity <mode>,<ch_list> setslogical input polarity on adigital SCP

channel.

Parameter Parameter Range of Default
Name Type Values Units
mode discrete (string) NORMal | INVerted none
ch list string 100 - 163 none

® |f the channels specified are on an SCP that doesn't support this function, an
error will be generated. See your SCP's User’'s Manual to determine its

214 HP E1415 Command Reference

Chapter 6

INPut
capabilities.
® Related Commands: for output sense; SOURce:PUL Se:POL arity

® *RST Condition: INP:POL NORM for al digital SCP channels.

Usage INP:POL INV,(@140:143) invert first 4 channels on SCP at SCP
position 5. Channels 40 through 43

INPut:POLarity?

INPut:POLarity? <channel> returns the logical input polarity on adigital SCP

channel.
Parameters
Parameter Parameter Range of Default
Name Type Values Units
channel string 100 - 163 none
Comments ® <channel> must specify a single channel.

® |f the channel specified is on an SCP that doesn't support this function, an error
will be generated. See your SCP's User’'s Manual to determine its capabilities.

® Returned Value: returns"NORM" or "INV". The typeisstring.

Chapter 6 HP E1415 Command Reference 215

MEMory

TheMEMory subsystem allowsusing VM E memory asan additional reading storage
buffer.

Subsystem Syntax MEMory
‘VME
:ADDRess <A24 address>
:ADDRess?
:SIZE <mem_size>
:SIZE?
:STATe 1|0|ON | OFF
STATe?

Note Thissubsystem isonly available in systems using an HP E1405B or HP E1406A
command module.

Use Sequence *RST
MEM:VME:ADDR #H300000
MEM:VME:SIZE #H100000 1M byte or 262144 readings
MEM:VME:STAT ON

*

*(set up E1415 for scanning)

*

TRIG:SOUR IMM let unit trigger on INIT
INIT
*OPC? program execution remains here until

VME memory isfull or the HP E1415 has
stopped taking readings

FORM REAL,64 affects only the return of data

FETCH? return data from VME memory

Note When usingthe MEM subsystem, the module must be triggered before executing the
INIT command (as shown above) unless you are using an external trigger (EXT
trigger). When using EXT trigger, the trigger can occur at any time.

MEMory:VME:ADDRess

MEMory:VME:ADDRess <A24 address> setsthe A24 address of the VME
memory card to be used as additional reading storage.

216 HP E1415 Command Reference Chapter 6

MEMory

Parameters

Parameter Parameter Range of Default

Name Type Values Units
A24 address numeric valid A24 address none
Comments ® Thiscommand is only available in systems using an HP E1405B or HP

E1406A command module.

® The default (if MEM:VME:ADDR not executed) is 2400004.

® A24 address may be specified in decimal, hex (#H), octal (#Q), or binary
(#B).

® Related Commands. MEMory subsystem, FORMat, and FETCH?

* *RST Condition: VME memory address starts at 200000,5. When using an
HP E1405/6 command module, the first HP E1415 occupies 20000044 -
23FFFFg.

Usage MEM:VME:ADDR #H400000 Set the address for the VME memory card

to be used as reading storage

MEMory:VME:ADDRess?

MEMory:VME:ADDRess? returns the address specified for the VME memory card
used for reading storage.

Comments ® Retur ned Value: numeric.

® Thiscommand is only available in systems using an HP E1405B or HP
E1406A command module.

® Related Commands: MEMory subsystem, , FORMat, and FETCH?

Usage MEM:VME:ADDR? Returns the address of the VME memory
card.

MEMory:VME:SIZE

MEMory:VME:SIZE <mem_size> Specifiesthe number of bytes of VME memory
to allocate for additional reading storage.

Parameters
Parameter Parameter Range of Default
Name Type Values Units
mem size numeric to limit of available VME memory none

Chapter 6 HP E1415 Command Reference 217

MEMory

Comments ® Thiscommand is only available in systems using an HP E1405B or HP
E1406A command module.

®* mem_size may be specified in decimal, hex (#H), octal (#Q), or binary(#B).
® mem_size should be amultiple of four (4) to accommodate 32 bit readings.
® Related Commands: MEMory subsystem, FORMAT, and FETCH?

® *RST Condition: MEM:VME:SIZE O

Usage MEM:VME:SIZE 32768 Allocate 32 Kbytes of VME memory to
reading storage (8192 readings)

MEMory:VME:SIZE?

MEMory:VME:SIZE? returns the amount (in bytes) of VME memory allocated to
reading storage.

Comments ® Thiscommand is only available in systems using an HP E1405B or HP
E1406A command module.

® Returned Value: Numeric.

® Related Commands: MEMory subsystem, and FETCH?

Usage MEM:VME:SIZE? Returns the number of bytes allocated to
reading storage.

MEMory:VME:STATe

MEMory:VME:STATe <enable> enables or disables use of the VME memory card
as additional reading storage.

Parameters
Parameter Parameter Range of Default
Name Type Values Units
enable boolean (uint16) 1|0|ON | OFF none
Comments ® Thiscommand is only available in systems using an HP E1405B or HP

E1406A command module.

® \WWhen the VME memory card is enabled, the INIT command does not
terminate until data acquisition stops or VME memory isfull.

® Related Commands: Memory subsystem, and FETCH?

* *RST Condition: MEM:VME:STAT OFF

218 HP E1415 Command Reference Chapter 6

MEMory

Usage MEMORY:VME:STATE ON enable VME card asreading storage
MEM:VME:STAT 0 Disable VME card as reading storage

MEMory:VME:STATe?

MEMory:VME:STATe? returned value of O indicates that VME reading storageis
disabled. Returned value of 1 indicates VME memory is enabled.

Comments ® Thiscommand is only available in systems using an HP E1405B or HP
E1406A command module.

® Returned Value: Numeric 1 or 0. C-SCPI type uint16.

® Related Commands. MEMory subsystem, and FETCH?

Usage MEM:VME:STAT? Returns 1 for enabled, O for disabled

Chapter 6 HP E1415 Command Reference 219

OUTPut

The OUTPut subsystem isinvolved in programming source SCPs as well as
controlling the state of VXIbus TTLTRG lines O through 7.

Subsystem Syntax OUTPut
:CURRent
:AMPLitude <amplitude>,(@<ch_list>)
:AMPLitude? (@<channel>)
[[STATe] 1|0 | ON | OFF,(@<ch_list>)
[:STATe]? (@<channel>)
:POLarity NORMal | INVerted,(@<ch_list>)
:POLarity? (@<channel>)
:SHUNt 1|0 | ON | OFF,(@<ch_list>)
:SHUNt? (@<channel>)
‘TTLTrg
:SOURce TRIGger | FTRigger | SCPlugon | LIMit
:SOURce?
TTLTrg<n>
[STATe] 1| 0| ON | OFF
[[STATe]?
:TYPE PASSive | ACTive,(@<ch_list>)
- TYPE? (@<channel>)
‘VOLTage
:AMPLitude <amplitude>,(@<ch_list>)
:AMPLitude? (@<channel>)

OUTPut:CURRent:AMPLItude

OUTPut:CURRent:AMPLitude <amplitude>,(@<ch_list>) setsthe HP E1505
Current Source SCP channels specified by ch_list to either 488 pA, or 30 YA. This
current istypically used for four-wire resistance and resistance temperature
measurements.

Note This command does not set current amplitude on SCPs like the HP E1532 Current

Output SCP.
Parameters
Parameter Parameter Range of Default
Name Type Values Units
amplitude numeric (float32) MIN | 30E-6 | MAX | 488E-6 ADC
ch list channel list (string) 100 - 163 none

220 HP E1415 Command Reference Chapter 6

Comments

Usage

OUTPut

® Select 488E-6 (or MAX) for measuring resistances of less than 8000 Ohms.
Select 30E-6 (or MIN) for resistances of 8000 Ohms and above. amplitude
may be specified in yA (ua).

® For resistance temperature measurements ([SEN Se:]FUNCtion: TEM Perature)
the Current Source SCP must be set as follows:

MAX (488p1A) | for RTD,85|92 and THER,2250

MIN (30pA) for THER,5000 | 10000

* When * CAL?is executed, the current sources are calibrated on the range
selected at that time.

® \When Accepted: Not while INITiated
® Related Commands; *CAL?, OUTP.CURR:AMPL?

® *RST Condition: MIN

OUTP:CURR:AMPL 488ua,(@116:123) Set Current Source SCP at channels 16
through 23 to 488 pA

OUTP:CURR:AMPL 30E-6,(@105) Set Current Source SCP at channel 5 to
30 pA

OUTPut:CURRent:AMPLitude?

Parameters

Comments

Usage

OUTPut:CURRent:AMPLitude? (@<channel>) returns the range setting of the
Current Source SCP channel specified by channel.

Parameter Parameter Range of Default
Name Type Values Units
channel channel list (string) 100 - 163 none

® channel must specify a single channel only.

® |f channel specifies an SCP which is not a Current Source, a+3007, "Invalid
signal conditioning plug-on" error is generated.

® Returned Value: Numeric value of amplitude set. The C-SCPI type isfloat32.

* Related Commands; OUTP.CURR:AMPL

OUTP:CURR:AMPLITUDE? (@163) Check SCP current set for channel 63
(returns +3.0E-5 or +4.88E-4)

Chapter 6

HP E1415 Command Reference 221

OUTPut

OUTPut:CURRent[:STATe]

OUTPut:CURRent[:STATe] <enable>,(@<ch_list>) enables or disables current
source on channels specified in <ch_list>.

Parameters
Parameter Parameter Range of Default
Name Type Values Units
enable boolean (uint16) 1|0|ON | OFF none
ch list channel list (string) 100 - 163 none

Comments ® OQUTP:.CURR:STAT does not affect a channel’s amplitude setting. A channel
that has been disabled, when re-enabled sources the same current set by the
previous OUTP:CURR:AMPL command.

® OUTP:CURR:STAT is most commonly used to turn off excitation current to
four-wire resistance (and resistance temperature device) circuits during
execution of CAL:TARE for those channels.

* When Accepted: Not while INITiated

® Related Commands: OUTP.CURR:AMPL, CAL:TARE

® *RST Condition: OUTP:CURR OFF (al channels)

Usage OUTP:CURR OFF,(@100,108) turn off current source channels 0 and 8

OUTPut:CURRent[:STATe]?

OUTPut:CURRent[:STATe]? (@<channel>) returnsthestateof the Current Source
SCP channel specified by <channel>. If the channel is not on an HP E1505 Current

Source SCP, the query will return zero.

Parameters
Parameter Parameter Range of Default
Name Type Values Units
channel channel list (string) 100 - 163 none
Comments ® channel must specify a single channel only.
® Returned Value: returns 1 for enabled, O for disabled. C-SCPI typeisuint16.
® Related Commands: OUTP:CURR:STATE, OUTP:CURR:AMPL
Usage OUTP:CURR? (@108) query for state of Current SCP channel 8
execute enter statement here enter query value, either 1 or O
Chapter 6

222 HP E1415 Command Reference

OUTPut

OUTPut:POLarity

OUTPut:POLarity <select>,(@<ch_list>) setsthe polarity on digital output
channelsin <ch_list>.

Parameters
Parameter Parameter Range of Default
Name Type Values Units
select discrete (string) NORMal | INVerted none
ch list string 100 - 163 none
Comments ® |f the channels specified do not support this function, an error will be
generated.
® Related Commands: INPut:POL arity, OUTPut:POL arity?
® *RST Condition: OUTP:POL NORM for al digital channels
Usage OUTP:POL INV,(@144) invert output logic sense on channel 44

OUTPut:POLarity?

OUTPut:POLarity? (@<channel>) returnsthe polarity onthedigital output channel

in <channel>.
Parameters
Par ameter Parameter Range of Default
Name Type Values Units
channel string 100 - 163 none
Comments ® Channel must specify a single channel

® Returned Value: returns one of NORM or INV. The typeisstring.

OUTPut:SHUNt

OUTPut:SHUNt <enable>,(@<ch_list>) adds shunt resistance to one leg of bridge
on Strain Bridge Completion SCPs. This can be used for diagnostic purposes and
characterization of bridge response.

Chapter 6 HP E1415 Command Reference 223

OUTPut

Parameters
Parameter Parameter Range of Default
Name Type Values Units
enable boolean (uint16) 0|1|ON | OFF none
ch list channel list (string) 100 - 163 none
Comments ® |f ch_list specifies anon strain SCP, a 3007 "Invalid signal conditioning
plug-on" error is generated.
® When Accepted: Not while INITiated
® Related Commands: [SENSe]FUNCtion:STRain..., [SENSe]STRain...
® *RST Condition: OUTP:SHUNT 0 on all Strain SCP channels
Usage OUTP:SHUNT 1,(@116:119) add shunt resistance at channels 16

through 19

OUTPut: SHUNt?

OUTPuUt:SHUNt? (@<channel>) returnsthe status of the shunt resistance on the
specified Strain SCP channel.

Parameters

Parameter Parameter Range of Default

Name Type Values Units
channel channel list (string) 100 - 163 none
Comments ® channel must specify a single channe only.

® |f channel specifiesanon strain SCP, a 3007 "Invalid signal conditioning
plug-on" error is generated.

® Returned Value: Returns 1 or 0. The C-SCPI typeisuint16.

® Related Commands: OUTP:SHUNT

Usage OUTPUT:SHUNt? (@116) Check status of shunt resistance on

channdl 16

OUTPut:TTLTrg:SOURce

OUTPut:TTLTrg:SOURce <trig_source> selectsthe internal source of the trigger
event that will operate the VXIbus TTLTRG lines.

224 HP E1415 Command Reference Chapter 6

OUTPut

Parameters

Par ameter Parameter Range of Default
Name Type Values Units

trig_source | discrete (string) | ALGorithm | TRIGger | FTRigger | SCPiugon none

Comments * The following table explains the possible choices.

ALGorithm Generated by the Algorithm Language function
"interrupt()"

FTRigger Generated on the First Trigger of a multiple "counted
scan" (set by TRIG:COUNT <trig_count>)

SCPlugon Generated by a Signal Conditioning Plug-on (SCP). Do
not use this when Sample-and-Hold SCPs are installed.

TRIGger Generated every time ascan istriggered (see
TRIG:SOUR <trig_source>)

®* FTRigger (First TRigger) is used to generate asingle TTLTRG output when
repeated triggers are being used to make multiple executions of the enabled
algorithms. The TTLTRG line will go low (asserted) at the first trigger event
and stay low through subsequent triggers until the trigger count (as set by
TRIG:COUNT) is exhausted. At this point the TTLTRG line will return to its
high state (de-asserted). This feature can be used to signal when the HP E1415
has started running its control algorithms.

® Related Commands: OUTP.TTLT<n>[:STATE], OUTP:TTLT:SOUR?,
TRIG:SOUR, TRIG:COUNT

¢ *RST Condition: OUTP:TTLT:SOUR TRIG

Usage OUTP:TTLT:SOUR TRIG toggle TTLTRG line every timemoduleis
triggered (use to trigger other HP
E14159)

OUTPut:TTLTrg:SOURce?

OUTPut:TTLTrg:SOURce? returnsthe current setting for the TTLTRG line source.

Comments ® Returned Value: Discrete, one of; TRIG, FTR, or SCP. C-SCPI typeisstring.

® Related Commands; OUTP: TTLT:SOUR

Usage OUTP:TTLT:SOUR? enter statement will return on of FTR,
SCP, or TRIG

Chapter 6 HP E1415 Command Reference 225

OUTPut

OUTPuUt:TTLTrg<n>[:STATe]

Parameters

Comments

Usage

OUTPut:TTLTrg<n>:STATe <ttltrg_cntrl> specifieswhichVXIbusTTLTRG line
is enabled to source atrigger signa when the module istriggered. TTLTrg<n> can
specify line 0 through 7. For example,:.TTLTRGA4, or TTLT4 for VXIbus
TTLTRG line 4.

Parameter Parameter Range of Default
Name Type Values Units
ttitrg_cntrl boolean (uint16) 1|0|ON | OFF none

® Only one VXlbus TTLTRG line can be enabled simultaneously.
® When Accepted: Not while INITiated
®* Related Commands; ABORT, INIT..., TRIG...

® *RST Condition: OUTPut:TTLTrg<0 through 7> OFF

OUTP:TTLT2 ON Enable TTLTRG2 line to source a trigger
OUTPUT:TTLTRG7:STATE ON Enable TTLTRGY line to source a trigger

OUTPut: TTLTrg<n>[:STATe]?

Comments

Usage

OUTPuUt: TYPE

OUTPuUt: TTLTrg<n>[:STATe]? returns the current state for TTLTRG line <n>.

® Returned Value: Returns 1 or 0. The C-SCPI typeisint16.

® Related Commands; OUTP: TTLT<n>

OUTP:TTLT2? Seeif TTLTRG2 lineisenabled (returns 1
or 0)
OUTPUT:TTLTRG7:STATE? Seeif TTLTRGY lineis enabled

Parameters

OUTPuUt: TYPE <select>,(@<ch_list>) setsthe output drive characteristicfor digital
SCP channels.

Par ameter Parameter Range of Default
Name Type Values Units
select discrete (string) PASSive | ACTive seconds
ch list string 100 - 163 none

226 HP E1415 Command Reference Chapter 6

OUTPut

Comments ® |f the channels specified are on an SCP that doesn't support this function an
error will be generated. See your SCP's User’'s Manual to determine its
capabilities.

® PASSive configures the digital channel/bit to be passive (resistor) pull-up to
allow you to wire-or more than one output together.

® ACTive configuresthe digital channel/bit to both source and sink current.
® Related Commands: SOURce:PUL Se:POL arity, OUTPut:TY PE?

® *RST Condition: OUTP.TYPE ACTIVE (for TTL compatibility)

Usage OUTP:TYPE PASS,(@140:143) make channels 40 to 43 passive pull-up

OUTPuUt: TYPE?

OUTPuUt:TYPE? <channel> returns the output drive characteristic for adigital

channel.
Parameters
Par ameter Parameter Range of Default
Name Type Values Units
channel string 100 - 163 none
Comments ® Channel must specify a single channel.

® |f the channel specified is not on adigital SCP, an error will be generated.
® Returned Value: returns PASS or ACT. Thetypeisstring.

® *RST Condition: returns ACT

OUTPut:VOLTage:AMPLitude

OUTPut:VOLTage:AMPLitude <amplitude>,(@<ch_list>) sets the excitation
voltage on programmable Strain Bridge Compl etion SCPs pointed to by <ch_list>
(the HP E1511 for example). Thiscommand isnot used to set output voltage on SCPs
like the HP E1531 Voltage Output SCP.

Parameters
Parameter Parameter Range of Default
Name Type Values Units
amplitude numeric (float32) MIN|O|1]|2|5]|10| MAX none
ch list channel list (string) 100 - 163 none

Chapter 6 HP E1415 Command Reference 227

OUTPut

Comments ® To turn off excitation voltage (when using external voltage source) program
amplitudeto O.

® Related Commands; OUTP:VOLT:AMPL?

® *RST Condition: MIN (0)

Usage OUTP:VOLT:AMPL 5,(@116:119) set excitation voltage for channels 16
through 19

OUTPut:VOLTage:AMPLitude?

OUTPut:VOLTage:AMPLitude? (@<channel>) returnsthe current setting of
excitation voltage for the channel specified by <channel>. If the channel isnot onan
HP E1511 SCP, the query will return zero.

Comments ® channel must specify a single channel only.
® Returned Value: Numeric, oneof 0, 1, 2,5, or 10. C-SCPI typeisfloat32.

®* Related Commands; OUTP:VOLT:AMPL

Usage OUTP:VOLT:AMPL? (@103) returns current setting of excitation
voltage for channel 3

228 HP E1415 Command Reference Chapter 6

ROUTe

The ROUTe subsystem providesamethod to query the overall channel list definition
for its sequence of channels.

Subsystem Syntax ROUTe
:SEQuence
:DEFine?
:POINts?

ROUTe:SEQuence:DEFine?

ROUTe:SEQuence:DEFine? <type> returns the sequence of channels defined in
the scan list.

Parameters

Parameter Parameter Range of Default
Name Type Values Units

type (string) AIN |AOUT | DIN | DOUT none

Comments ® The channel list contents and sequence are determined primarily by channel
references in the algorithms currently defined. The SENS:REF:CHANNELS,
and SENS:CHAN:SETTLING commands also effect the scan list contents.

® The <type> parameter selects which channel list will be queried:

"AIN" selects the Analog Input channel list (thisisthe Scan List).
"AOUT" selects the Analog Output channel list.

"DIN" selectsthe Digital Input channel list.

"DOUT" selects the Digital Output channel list.

® Returned Value: Definite Length Arbitrary Block Data format. This data
return format is explained in “Arbitrary Block Program and Response Data”
on page 160. Each value is 2 bytes in length (the C-SCPI data typeid@n
array).

® *RST Condition: To supply the necessary time delay before Digital inputs are
read, the analog input (AIN) scan list contains eight entries for channel 0
(100).This minimum delay is maintained by replacing these default channels
as others are defined in algorithms. After algorithm definition, if somedelay is
still required, there will be repeat entries of the last channd referenced by an
algorithm. The three other lists contain no channels.

Usage ROUT:SEQ:DEF? AIN query for analog input (Scan List)
sequence

Chapter 6 HP E1415 Command Reference 229

ROUTe

ROUTe:SEQuence:POINts?

ROUTe:SEQuence:POINts? <type> returns the number of channels defined in

each of the four channel list types.

Parameters
Parameter Parameter Range of Default
Name Type Values Units
type (string) AIN |AOUT | DIN | DOUT none
Comments ® Thechanndl list contents and sequence are determined by channel referencesin

the a gorithms currently defined.
® The <type> parameter selects which channel list will be queried:

"AIN" selects the Analog Input list.

"AOUT" selects the Analog Output list.

"DIN" sdlectsthe Digital Input list.

"DOUT" selects the Digital Output list.

® Returned Value: Numeric. The C_SCPI typeisint16.

® *RST Condition: The Analog Input list returns +8, the others return +0.

Usage ROUT:SEQ:POINTS? AIN

guery for analog input channel count

230 HP E1415 Command Reference

Chapter 6

SAMPle

The SAMPIe subsystem provides commands to set and query the interval between
channel measurements (pacing).

Subsystem Syntax SAMPle

TIMer <interval>
TIMer?

SAMPIle:TIMer

SAMPle:TIMer <interval> setsthetimeinterval between channel measurements. It
is used to provide additional channel settling time. See “Settling Characteristics” on
page 110.

Parameters

Parameter Parameter Range of Default
Name Type Values Units

interval numeric (float32) 1.0E-5to 16.3825E-3 | seconds
(string) MIN | MAX

Comments ® The minimum interval is 10 u seconds. The resolution for interval is 2.5
psecond.

® |f the Sample Timer interval multiplied by the number of channelsin the
specified Scan List islonger than the Trigger Timer interval, a runtime a
"Trigger too fast" error will be generated.

* the SAMP.TIMER interval can change the effect of the
SENS.CHAN:SETTLING command. ALG:CHAN:SETT specifiesthe
number of times a channel measurement should be repeated. The total settling
time per channel thenis (SAMP:TIMER <interval>) X (<chan_repeats> from
SENS:CHAN:SETT)

* When Accepted: Not while INITiated
® Related Commands: SENSE:CHAN:SETTLING SAMP:.TIMER?

® *RST Condition: Sample Timer for all Channel Lists set to 1.0E-5 seconds.

Usage SAMPLE:TIMER 50E-6 Pace measurements at 50psecond
intervals

Chapter 6 HP E1415 Command Reference 231

SAMPle

SAMPIle: TIMer?

SAMPIle:TIMer? returnsthe sample timer interval.
Comments ® Returned Value: Numeric. The C-SCPI typeis float32.
® Related Commands: SAMP:TIMER

® *RST Condition: Sample Timer set to 1.0E-5 seconds.

Usage SAMPLE:TIMER? Check the interval between channel
measurements

232 HP E1415 Command Reference Chapter 6

[SENSe]

Subsystem Syntax [SENSe]
:CHANnel
:SETTIing <settle_time>,(@<ch_list>)
:SETTIing? (@<channel>)
DATA
:CVTable? (@<element list>)
‘RESet
‘FIFO
[:ALL]?
:COUNt?
‘HALF?
‘HALF?
:MODE BLOCk | OVERwrite
:MODE?
:PART? <n_values>
‘RESet
FREQuency:APERture <gate time>,<ch_list>
FREQuency:APERture? <channel>
FUNCtion
:CONDition (@<ch_list>)
:CUSTom [<range>,)(@<ch_list>)
:REFerence [<range>,](@<ch_list>)
:TC <type>,[<range>,](@<ch_list>)
:FREQuency (@<ch_list>)
:RESistance <excite_current>,[<range>,](@<ch_list>)
:STRain
:FBENding [<range>,)(@<ch_list>)
:FBPoisson [<range>,)(@<ch_list>)
:FPOisson [<range>,(@<ch_list>)
‘HBENding [<range>,)(@<ch_list>)
:HPOisson [<range>,)(@<ch_list>)
[[QUARter] [<range>,)(@<ch_list>)
:-TEMPerature
<sensor_type>,<sub_type>,[<range>,](@<ch_list>)
:TOTalize (@<ch_list>)
'\VOLTage[:DC] [<range>)(@<ch_list>)
REFerence <sensor_type>, [<sub_type>,J(@<ch_list>)
:CHANnels (@<ref_channel>),(@<ch_list>)
:-TEMPerature <degrees_celsius>
STRain
:EXCitation <excite_v>,(@<ch_list>)
:EXCitation? (@<channel>)
:GFACtor <gage factor>,(@<ch_list>)
:GFACtor? (@<channel>)
:POISson <poisson_ratio>,(@<ch_list>)
:POISson? (@<channel>)
:UNSTrained <unstrained_v>,(@<ch_list>)

Chapter 6 HP E1415 Command Reference

233

[SENSe]

:UNSTrained? (@<channel>)
TOTalize:RESet:MODE INIT | TRIGger,(@<ch_list>)
TOTalize:RESet:MODE? (@<channel>)

[SENSe:]CHANnNel:SETTIling

[SENSe:]CHANNel:SETTIling <num_samples>,<ch_list> specifiesthe number of
measurement samples to make on channelsin <ch_list>. SENS:CHAN:SETTLING
is used to provide additional settling time only to selected channels that might need
it. See “Settling Characteristics” on page 110.

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

settle time

numeric (int16)

1to64

none

Comments

Usage

ch list string 100 - 163 none

® SENS:CHAN:SETTLING causes each channel specified in <ch_list> that is
aso referenced in an algorithm to appear <num_samples> times in the analog
input Scan List. Channels that do not appear in any SENS:CHAN:SETT
command will be entered into the scan list only once when referenced in an
algorithm.

® Since the scan list islimited to 64 entries, an error will be generated if the
number of channels referenced in algorithms plus the additional entries from
any SENS:CHAN:SETTLING commands that coincide with algorithm
referenced channels exceeds 64.

® The SAMPLE:TIMER command can change the effect of the
SENS:CHAN:SETTLING command since SAMPLE:TIMER changes the
amount of time for each measurement sample.

* When Accepted: Not while INITiated

* Related Commands. [SENSe:]CHANnd:SETTling?, SAMPLE:TIMER

® *RST Condition: SENS:CHAN:SETTLING 1,(@100:163)

SENS:CHAN:SETT 4,(@144,156) settle channels 44 and 56 for 4

measurement periods

[SENSe:]CHANnNnel:SETTIling?

[SENSe:]CHANnNel:SETTling? <channel> returns the current number of samples
to make on <channel>.

234 HP E1415 Command Reference

Chapter 6

Parameters
Par ameter Parameter Range of Default
Name Type Values Units
channel string 100 - 163 none
Comments ® <channel> must specify a single channel.

[SENSe]

® Related Commands: SENS:CHAN:SETT, SAMP. TIMER?

® *RST Condition: will return 1 for al channels.

® Returned Value: returns numeric number of samples, The typeisint16.

[SENSe:]DATA:CVTable?

Parameters
Parameter Parameter Range of Default
Name Type Values Units
element_list channel list 10-511 none

[SENSe:]DATA:CVTable? (@<element_list>) returns from the Current Vaue
Table the most recent values stored by algorithms.

Comments ® [SENSe]DATA:CVTahle? (@<element_list>) allows you to "view" the latest

values of internal algorithm variables while algorithms are executing.

® The Current Value Table is an areain memory that can contain as many as 502
32-bit floating point values. Algorithms can copy any of their variable values
into these CVT elements while they execute.

® Thereis apre-defined organization for the first part of the CVT. It isdivided
into 32, 10 element segments. Thisallows up to 32 PID algorithms to place up
to 10 variable values each into the CVT. The pre-defined PIDB algorithm can
return 4 variable values. The PIDC algorithm (defined as a custom algorithm)
can return up to 9. With up to 32 PIDs possible, 320 elements are allocated for
"standard" PIDs. ALGL1 can use elements 10-19, ALG2 can use el ements
20-29, ALG3 can use elements 30-39, etc. through ALG32 which can use

elements 320-329. The values stored in each segment are:

ElementVariableDescription

xx0
xx1
XX2
Xx3
xXx4
xx5
XX6
XX7

Sense Process value monitored(PIDB & C)

Error Setpoint value minus Sense value(PIDB & C)
OutputProcess control drive valug(PIDB & C)

Status Bit values indicate Clips/Alarms limited(PIDB & C)
SetpointSetpoint value

(PIDC only)

Setpoint_DValue of Differential term from setpoint(PIDC only)

P Vaue of Proportional term(PIDC only)

I Value of Integral term(PIDC only)

Chapter 6

HP E1415 Command Reference 235

[SENSe]

Xx8 D Vaue of Differential term(PIDC only)
xx9 reserved for future use

® Elements 0 through 9 are not accessible.

® Custom written algorithms can use CVT elements 330-511. You define how
your custom algorithms will use this area.

® The format of values returned is set using the FORMat[:DATA] command

® Returned Value: ASCII values are returned in the form £1.234567E+123.
For example 13.325 voltswould be +1.3325000E+001. Each valueisfollowed
by acomma(,). A linefeed (LF) and End-Or-Identify (EOI) follow the last
value. The C-SCPI datatypeisastring array.

REAL 32, REAL 64, and PACK 64, values are returned in the

|EEE-488.2-1987 Definite Length Arbitrary Block Data format. This data

return format is explained in “Arbitrary Block Program and Response Data”
on page 160. For REAL 32, each value is 4 bytes in length (the C-SCPI data
type is afloat32 array). For REAL 64 and PACK 64, each value is 8 bytes in
length (the C-SCPI data type i$laat64 array).

Note After *RST/Power-on, each element in the CVT contains the IEEE-754 value
"Not-a-number" (NaN). Elements specified in the DATA:CVT? command that have
not been written to be an algorithm will return the value 9.91E37.

* *RST Condition: All elements of CVT contains |EEE-754 "Not a Number".

Usage SENS:DATA:CVT? (@10:13) Return all variablesfrom Sd PIDB ALG1
DATA:CVT? (@30:38) Return all 9 variablesfrom PIDC ALG3
DATA:CVT? (@10,13) Return only element 0 (Sense) and

element 3 (Satus) fromPID ALG1
DATA:.CVT? (@330:337,350,360) Return custom algorithm values from

elements 330-337, 350, and 360

[SENSe:]DATA:CVTable:RESet

[SENSe:]DATA:CVTable:RESet setsal 64 Current Value Table entriesto the
|EEE-754 "Not-a-number".

Comments ® The value of NaN is+9.910000E+037 (ASCII).

® Executing DATA:CVT:RES while the module is INITiated will generate an
error 3000, "lllegal while initiated".

® When Accepted: Not while INITiated

* Related Commands: SENSE:DATA:CVT?

236

HP E1415 Command Reference Chapter 6

Usage

[SENSe]
® *RST Condition: SENSE:DATA:CVT:RESET

SENSE:DATA:CVT:RESET Clear the Current Value Table

[SENSe:]DATA:FIFO[:ALL]?

Comments

Note

Usage

Command
Sequence

[SENSe:]DATA:FIFO[:ALL]? returns all values remaining in the FIFO buffer until
all measurements are complete or until the number of values returned exceeds FIFO
buffer size (65,024).

* DATA:FIFO? may be used to acquire all values (even while they are being
made) into a single large buffer, or can be used after one or more
DATA:FIFO:HALF? commands to return the remaining values from the
FIFO.

® The format of values returned is set using the FORMat[:DATA] command.

® Returned Value: ASCII values are returned in the form +£1.234567E+123.
For example 13.325 voltswould be +1.3325000E+001. Each valueisfollowed
by acommac(,). A linefeed (LF) and End-Or-Identify (EOI) follow the last
value. The C-SCPI datatypeisastring array.

REAL 32, REAL 64, and PACK 64, values are returned in the

| EEE-488.2-1987 Indefinite Length Arbitrary Block Dataformat. This data

return format is explained in “Arbitrary Block Program and Response Data”
on page 160. For REAL 32, each value is 4 bytes in length (the C-SCPI data
type is afloat32 array). For REAL 64 and PACK 64, each value is 8 bytes in
length (the C-SCPI data type i$laat64 array).

Algorithm values which are a positive overvoltage return IEEE +INF and a negative
overvoltage return IEEE -INF (see Table 6-1 on page 207 for actual values for each
data format).

® Related Commands; SENSE:DATA:FIFO:HALF?

® *RST Condition: FIFO is empty

DATA:FIFO? return all FIFO values until
measurements complete and FIFO empty

set up scan lists and trigger

SENSE:DATA:FIFO:ALL?

now execute read statement read statement does not complete until
triggered measurements are complete
and FIFO is empty

Chapter 6

HP E1415 Command Reference 237

[SENSe]

[SENSe:]DATA:FIFO:COUNt?

[SENSe:]DATA:FIFO:COUNLt? returns the number of values currently in the FIFO
buffer.

Comments ®* DATA:FIFO:COUNT?is used to determine the number of valuesto acquire
with the DATA:FIFO:PART? command.

® Returned Value: Numeric 0 through 65,024. The C-SCPI typeisint32.
® Related Commands: DATA:FIFO:PART?

® *RST Condition: FIFO empty

Usage DATA:FIFO:COUNT? Check the number of valuesin the FIFO
buffer

[SENSe:]DATA:FIFO:COUNt:HALF?

[SENSe:]DATA:FIFO:COUNt:HALF? returnsa lif the FIFO is at least half full
(contains at least 32,768 values), or 0 if FIFO isless than half-full.

Comments ® DATA:FIFO:COUNT:HALF?is used as afast method to poll the FIFO for the
half-full condition.

® Returned Value: Numeric 1 or 0. The C-SCPI typeisint16.
* Related Commands: DATA:FIFO:HALF?

® *RST Condition: FIFO empty

Command DATA:FIFO:COUNT:HALF? poll FIFO for half-full status
Sequence DATA:FIFO:HALF? returns 32768 values

[SENSe:]DATA:FIFO:HALF?

[SENSe:]DATA:FIFO:HALF? returns 32,768 values if the FIFO buffer is at least
haf-full. This command provides a fast means of acquiring blocks of values from
the buffer.

Comments ® For acquiring data from continuous algorithm executions, your application
needs to execute a DATA:FIFO:HALF? command and aread statement often
enough to keep up with the rate that values are being sent to the FIFO.

® Use the DATA:FIFO:ALL? command to acquire the values remaining in the
FIFO buffer after the ABORT command has stopped execution.

® The format of values returned is set using the FORMat[:DATA] command.

238 HP E1415 Command Reference Chapter 6

[SENSe]

® Returned Value: ASCII values are returned in the form £1.234567E+123.
For example 13.325 voltswould be +1.3325000E+001. Each valueisfollowed
by acomma(,). A linefeed (LF) and End-Or-Identify (EOI) follow the last
value. The C-SCPI datatypeisastring array.

REAL 32, REAL 64, and PACK 64, values are returned in the

|EEE-488.2-1987 Definite Length Arbitrary Block Data format. This data

return format is explained in “Arbitrary Block Program and Response Data”
on page 160. For REAL 32, each value is 4 bytes in length (the C-SCPI data
type is afloat32 array). For REAL 64 and PACK 64, each value is 8 bytes in
length (the C-SCPI data type i$laat64 array).

Note Algorithm values which are a positive overvoltage return IEEE +INF and a negative
overvoltage return IEEE -INF (see Table 6-1 on page 207 for actual values for each
data format).

® Related Commands; DATA:FIFO:COUNT:HALF?

® *RST Condition: FIFO buffer is empty

Command DATA:FIFO:COUNT:HALF? poll FIFO for half-full status
Sequence DATA:FIFO:HALF? returns 32768 values

[SENSe:]DATA:FIFO:MODE

[SENSe:]DATA:FIFO:MODE <mode> sets the mode of operation for the FIFO

buffer.
Parameters
Parameter Parameter Range of Default
Name Type Values Units
mode discrete (string) BLOCk | OVERwrite none
Comments ® |n BLOCk(ing) mode, if the FIFO becomes full and measurements are still

being made, the new values are discarded.

®* OVERwrite mode is used record the latest 65,024 values. The module must be
halted (ABORT sent) before attempting to read the FIFO. In OVERwrite
Mode, if the FIFO becomes full and measurements are still being made, new
values overwrite the oldest values.

® |n both modes Error 3021, "FIFO Overflow" is generated to let you know that
measurements have been lost.

* When Accepted: Not while INITiated

Chapter 6 HP E1415 Command Reference 239

[SENSe]

Usage

® Related Commands; SENSE:DATA:FIFO:MODE?,
SENSE:DATA:FIFO:ALL?, SENSE:DATA:FIFO:HALF?,
SENSE:DATA:FIFO:PART?, SENSE.DATA:FIFO:COUNT?

¢ *RST Condition: SENSE:DATA:FIFO:MODE BLOCk

SENSE:DATA:FIFO:MODE OVERWRITE Set FIFO to overwrite mode
DATA:FIFO:MODE BLOCK Set FIFO to block mode

[SENSe:]DATA:FIFO:MODE?

Comments

Usage

[SENSe:]DATA:FIFO:MODE? returns the currently set FIFO mode.

® Returned Value: String value either BLOCK or OVERWRITE. The C-SCPI
typeisstring.

* Related Commands: SENSE:DATA:FIFO:MODE

DATA:FIFO:MODE? Enter statement returns either BLOCK or

OVERWRITE

[SENSe:]DATA:FIFO:PART?

Parameters

Comments

[SENSe:]DATA:FIFO:PART? <n_values> returnsn_values from the FIFO buffer.

Parameter Parameter Range of Default
Name Type Values Units
n_values numeric (int32) 1-2,147,483,647 none

® Use the DATA:FIFO:COUNT? command to determine the number of values
in the FIFO buffer.

® The format of values returned is set using the FORMat[:DATA] command.

® Returned Value: ASCII values are returned in the form +£1.234567E+123.
For example 13.325 voltswould be +1.3325000E+001. Each valueisfollowed
by acommac(,). A linefeed (LF) and End-Or-Identify (EOI) follow the last
value. The C-SCPI datatypeisastring array.

REAL 32, REAL 64, and PACK 64, values are returned in the

|EEE-488.2-1987 Definite Length Arbitrary Block Dataformat. This data

return format is explained in “Arbitrary Block Program and Response Data”
on page 160. For REAL 32, each value is 4 bytes in length (the C-SCPI data
type is afloat32 array). For REAL 64 and PACK 64, each value is 8 bytes in
length (the C-SCPI data type i$laat64 array).

240 HP E1415 Command Reference Chapter 6

[SENSe]

Note Algorithm valueswhich are apositive overvoltage return |EEE +INF and anegative
overvoltage return |EEE -INF (see Table 6-1 on page 207 for actual valuesfor each
dataformat).

® Related Commands; DATA:FIFO:COUNT?

® *RST Condition: FIFO buffer empty

Usage DATAFFIFO:PART? 256 return 256 values from FIFO

[SENSe:]DATA:FIFO:RESet

[SENSe:]DATA:FIFO:RESet clearsthe FIFO of values. The FIFO counter isreset
to 0.

Comments ® When Accepted: Not while INITiated
® Related Commands; SENSE:DATA:FIFO...

® *RST Condition: SENSE:DATA:FIFO:RESET

Usage SENSE:DATA:FIFO:RESET Clear the FIFO

[SENSe:]JFREQuency:APERture

[SENSe:]FREQuency:APERture <gate_time>,<ch_list> setsthe gate time for
frequency measurement. The gate time isthe time period that the SCPwill allow for
counting signal transitionsin order to calculate frequency.

Parameters

Parameter Parameter Range of Default
Name Type Values Units

gate time numeric (float32) .001 to 1 (.001 resolution) seconds
ch list string 100 - 163 none

Comments ® |f the channels specified are on an SCP that doesn't support this function, an
error will be generated. See your SCP's User’'s Manual for its capabilities.
® Related Commands: SENSe:FUNCtion:FREQuency
® *RST Condition: .001 sec
Usage SENS:FREQ:APER .01,(@144) set channel 44 aperture to 10msec

Chapter 6 HP E1415 Command Reference 241

[SENSe]

[SENSe:]FREQuency:APERture?

[SENSe:]JFREQuency:APERture? <channel> returnsthefrequency counting gate

time.
Parameters
Parameter Parameter Range of Default
Name Type Values Units
channel string 100 - 163 none
Comments ® |f the channel specified ison an SCP that doesn't support this function, an error

will be generated. See your SCP’'s User's Manual for its capabilities.
® Related Commands: SENSe:FREQuency:APERture

® Returned Value: returns numeric gate time in seconds, The typeis float32.

[SENSe:]FUNCtion:CONDition

[SENSe:]FUNCtion:CONDition <ch_list> sets the SENSe function to input the
digital statefor channelsin<ch_list>. Also configuresdigital SCP channelsasinputs
(thisisthe * RST condition for al digital 1/0O channels).

Parameters
Parameter Parameter Range of Default
Name Type Values Units
ch list string 100 - 163 none

Comments ®* The HP E1533 SCP senses 8 digital bits on each channel specified by this
command. The HP E1534 SCP senses 1 digital bit on each channel specified
by this command.

® |f the channels specified are not on a digital SCP, an error will be generated.
® Usethe INPut:POL arity command to set input logica sense.
® Related Commands: INPut:POL arity

® *RST Condition: SENS:FUNC:COND and INP:POL NORM for al digital
SCP channels.

Usage To set second 8-bits of HP E1533 at SCP position 4, and upper 4-bits of HP E1534
at SCP position 5 to digital inputs send:

SENS:FUNC:COND (@133,144:147)

242 HP E1415 Command Reference Chapter 6

[SENSe]

[SENSe:]FUNCtion:CUSTom

Parameters

Comments

Usage

[SENSe:]FUNCtion:CUSTom [<range>,](@<ch_list>) links channels with the

custom Engineering Unit Conversion table loaded with the DIAG:CUST:LINEAR
or DIAG:CUST:PIECE commands. Contact your Hewl ett-Packard System Engineer
for more information on Custom Engineering Unit Conversion for your application.

Parameter Parameter Range of Default
Name Type Values Units
range numeric (float32) see first comment VDC
ch list channel list (string) 100 - 163 none

® <range> parameter: The HP E1415 hasfive ranges: .0625VDC, .25VDC,
1VDC, 4VvDC, and 16VDC. To select arange, simply specify the range value
(for example, 4 selects the 4VDC range). If you specify avalue larger than
one of thefirst four ranges, the HP E1415 selects the next higher range (for
example, 4.1 selectsthe 16V DC range). Specifying avalue larger than 16
causes an error -222 "Dataout of range”. Specifying 0 selectsthe lowest range
(.0625VDC). Specifying AUTO selects auto range. The default range (no
range parameter specified) is auto range.

® |f you are using amplifier SCPs, you should set them first and keep their
settings in mind when specifying arange setting. For instance, if your expected
signal voltage is to be approximately .1V DC and the amplifier SCP for that
channel hasagain of 8, you must set <range> no lower than 1VDC or an input
out-of-range condition will exist.

® |f an A/D reading is greater than the <table_range> specified with
DIAG:CUSTOM:PIEC, an overrange condition will occur.

® |f no custom table has been loaded for the channels specified with
SENS:FUNC:CUST, an error will be generated when an INIT command is
given.

® \When Accepted: Not while INITiated
* Related Commands: DIAG:CUST....

® *RST Condition: all custom EU tables erased

program must put table constants into array table_block

DIAG:CUST:LIN 1,table_block,(@116:123) send table to HP E1415 for chs 16-23
SENS:FUNC:CUST 1,(@116:123) link custom EU with chs 16-23
INITiate then TRIGger module

Chapter 6

HP E1415 Command Reference 243

[SENSe]

[SENSe:]JFUNCtion:CUSTom:REFerence

Parameters

Comments

Usage

[SENSe:]FUNCtion:CUSTom:REFerence [<range>,](@<ch_list>) linkschannels
with the custom Engineering Unit Conversion table loaded with the
DIAG:CUST:PIECE command. Measurements from a channel linked with
SENS:FUNC:CUST:REF will result in atemperature that is sent to the Reference
Temperature Register. This command is used to measure the temperature of an
isothermal reference panel using custom characterized RTDs or thermistors. Contact
your Hewl ett-Packard System Engineer for moreinformation on Custom Engineering
Unit Conversion for your application.

Parameter Parameter Range of Default
Name Type Values Units
range numeric (float32) see comments VDC
ch list channel list (string) 100 - 163 none

® See “Linking Input Channels to EU Conversion” on page 64.

® The <range> parameter: The HP E1415 hasfive ranges. .0625VDC, .25VDC,
1VDC, 4VvDC, and 16VDC. To select arange, simply specify the range value
(for example, 4 selectsthe 4vVDC range). If you specify avalue larger than
one of the first four ranges, the HP E1415 selects the next higher range (for
example, 4.1 selectsthe 16V DC range). Specifying avalue larger than 16
generates an error. Specifying 0 selects the lowest range (.0625VDC).
Specifying AUTO selects auto range. The default range (no range parameter
specified) is auto range.

® |f you are using amplifier SCPs, you should set them first and keep their
settings in mind when specifying arange setting. For instance, if your expected
signal voltage is to be approximately .1V DC and the amplifier SCP for that
channel hasagain of 8, you must set <range> no lower than 1VDC or an input
out-of-range condition will exist.

® The* CAL? command calibrates temperature channels based on Sense
Amplifier SCP setup at the time of execution. If SCP settings are changed,
those channels are no longer calibrated. * CAL? must be executed again.

® Related Commands: DIAG:CUST:PIEC, SENS:FUNC:TEMP,
SENS:FUNC:CUST:TC, *CAL?

* *RST Condition: all custom EU tables erased

program must put table constants into array table_block

DIAG:CUST:PIEC 1,table_block,(@108) send characterized reference transducer
table for use by channel 8

SENS:FUNC:CUST:REF .25,(@108) link custom ref temp EU with ch 8

include this channel in a scan list with thermocouple channels (REF channel first)

INITiate then TRIGger module

244 HP E1415 Command Reference Chapter 6

[SENSe]

[SENSe:]FUNCtion:CUSTom:TCouple

Parameters

Comments

Usage

[SENSe:]JFUNCtion:CUSTom:TCouple <type>,[<range>](@<ch_list>) links
channels with the custom Engineering Unit Conversion table loaded with the
DIAG:CUST:PIECE command. The tableis assumed to be for athermocouple and
the <type> parameter will specify the built-in compensation voltage table to be used
for reference junction temperature compensation. SENS:FUNC:CUST:TC alows
you to use an EU table that is custom matched to thermocouple wire you have
characterized. Contact your Hewlett-Packard System Engineer for more information
on Custom Engineering Unit Conversion for your application.

Parameter Parameter Range of Default
Name Type Values Units
type discrete (string) E|EEXT |J|K|N|R|S|T none
range numeric (float32) see comments VDC
ch list channel list (string) 100 - 163 none

® See “Linking Input Channels to EU Conversion” on page 64..

® The <range> parameter: The HP E1415 hasfive ranges. .0625VDC, .25VDC,
1VDC, 4vDC, and 16VDC. To select arange, simply specify the range value
(for example, 4 selectsthe 4vDC range). If you specify avalue larger than
one of the first four ranges, the HP E1415 selects the next higher range (for
example, 4.1 selectsthe 16V DC range). Specifying avalue larger than 16
generates an error. Specifying O selects the lowest range (.0625VDC).
Specifying AUTO selects auto range. The default range (no range parameter
specified) is auto range.

® |f you are using amplifier SCPs, you should set them first and keep their
settings in mind when specifying arange setting. For instance, if your expected
signal voltage is to be approximately .1V DC and the amplifier SCP for that
channel hasagain of 8, you must set <range> no lower than 1VDC or an input
out-of-range condition will exist.

® The sub_type EEXTended applies to E type thermocouples at 800°C and
above.

® The * CAL? command calibrates temperature channels based on Sense
Amplifier SCP setup at the time of execution. If SCP settings are changed,
those channels are no longer calibrated. * CAL? must be executed again.

* Related Commands: DIAG:CUST:PIEC, *CAL?,SENS:REF, and
SENS:REF:-TEMP

® *RST Condition: all custom EU tables erased

program must put table constants into array table_block
DIAG:CUST:PIEC 1,table_block,(@100:107) send characterized thermocouple table

Chapter 6

HP E1415 Command Reference 245

[SENSe]

for use by channels 0-7
SENS:FUNC:CUST:TC N,.25,(@100:107) link custom thermocouple EU with chs
0-7, use reference temperature
compensation for N type wire.
SENSE:REF RTD,92,(@120) designate a channel to measure the
reference junction temperature
include these channels in a scan list (REF channel first)
INITiate then TRIGger module

[SENSe:]JFUNCtion:FREQuency

[SENSe:]JFUNCtion:FREQuency <ch_list> sets the SENSe function to frequency
for channelsin <ch_list>. Also configures the channels specified as digital inputs.

Parameters

Par ameter Parameter Range of Default
Name Type Values Units

ch list string 100 - 163 none

Comments ® |f the channels specified are on an SCP that doesn't support this function, an
error will be generated. See your SCP's User’'s Manual for its capabilities.

® Use the SENSe:FREQuency:APERture command to set the gate time for the
frequency measurement.

® Related commands. SENS:FREQ:APER

® *RST Condition: SENS:FUNC:COND and INP:POL NORM for al digital
SCP channels

Usage SENS:FUNC:FREQ (@144) set channel 44's sense function to
frequency

[SENSe:]FUNCtion:RESistance

[SENSe:]FUNCtion:RESistance <excite_current>,[<range>,](@<ch_list>)
linksthe EU conversion type for resistance and range with the channel s specified by

ch _list.
Parameters
Parameter Parameter Range of Default
Name Type Values Units
excite_current discrete(string) 30E-6 | 488E-6 | MIN | MAX Amps
range numeric (float32) see first comment vVDC
ch list channel list (string) 100 - 163 none

Comments ® The <range> parameter: The HP E1415 hasfive ranges. .0625VDC, .25VDC,

246 HP E1415 Command Reference Chapter 6

[SENSe]

1VDC, 4VDC, and 16VDC. To select arange, simply specify the range value
(for example, 4 selectsthe 4VDC range). If you specify avalue larger than
one of the first four ranges, the HP E1415 selects the next higher range (for
example, 4.1 selectsthe 16VDC range). Specifying avalue larger than 16
causes an error. Specifying 0 selects the lowest range (.0625VDC).
Specifying AUTO selects auto range. The default range (no range parameter
specified) is auto range.

® |f you are using amplifier SCPs, you should set them first and keep their
settingsin mind when specifying arange setting. For instance, if your expected
signal voltage isto be approximately .1V DC and the amplifier SCP for that
channel hasagain of 8, you must set <range> no lower than 1VDC or an input
out-of-range condition will exist.

® Resistance measurements require the use of Current Source Signal
Conditioning Plug-Ons.

® The excite_current parameter (excitation current) does not control the current
applied to the channel to be measured. The excite_current parameter only
passes the setting of the SCP supplying current to channel to be measured. The
current must have already been set using the OUTPUT:CURRENT:AMPL
command. The choices for excite_current are 30E-6 (or MIN) and 488E-6 (or
MAX). excite_current may be specified in milliamps (ma) and microamps
(ua).

® The* CAL? command calibrates resistance channels based on Current Source
SCP and Sense Amplifier SCP setup at the time of execution. If SCP settings
are changed, those channels are no longer calibrated. * CAL? must be executed

again.

® See “Linking Input Channels to EU Conversion” on page 64.
® \When Accepted: Not while INITiated
® Related Commands: OUTP:CURR, *CAL?

¢ *RST Condition: SENSE:FUNC:VOLT (@100:163)

Usage FUNC:RES 30ua,(@100,105,107) Set channels0, 5, and 7 to convert voltage
to resistance assuming current source set
to 30 pA use auto-range (default)

Chapter 6 HP E1415 Command Reference 247

[SENSe]

[SENSe:]FUNCtion:STRain:FBENding
[SENSe:]FUNCtion:STRain:FBPoisson
[SENSe:]FUNCtion:STRain:FPOisson
[SENSe:]FUNCtion:STRain:HBENding
[SENSe:]FUNCtion:STRain:HPOisson
[SENSe:]JFUNCtion:STRain[:QUARter]

Note

[SENSe:]JFUNCtion:STRain:FBENding [<range>,](@<ch_list>)
[SENSe:]FUNCtion:STRain:FBPoisson [<range>,](@<ch_list>)
[SENSe:]FUNCtion:STRain:FPOisson [<range>,](@<ch_list>)
[SENSe:]JFUNCtion:STRain:HBENding [<range>,](@<ch_list>)
[SENSe:]JFUNCtion:STRain:HPOisson [<range>,](@<ch_list>)
[SENSe:]JFUNCtion:STRain[:QUARter] [<range>,](@<ch_list>)

Note on Syntax: Although the strain function is comprised of six separate SCPI

commands, the only difference between them is the bridge type they specify to the
strain EU conversion algorithm.

[SENSe:]JFUNCtion:STRain:<bridge_type> [<range>,](@<ch_list>) linksthe
strain EU conversion with the channels specified by ch_list to measure the bridge
voltage. See “Linking Input Channels to EU Conversion” on page 64.

The following table relates the command syntax to bridge type. See your Strain SCP
user's manual for bridge schematics and field wiring information.

Command Bridge Type
:FBENding Full Bending Bridge
:FBPoisson Full Bending Poisson Bridge
:FPQisson Full Poisson Bridge
:HBENding Half Bending Bridge
:HPQisson Half Poisson Bridge
[:QUARter] Quarter Bridge (default)

Because of the number of possible strain gage configurations, the driver must
generate any Strain EU conversion tables and download them to the instrument when
INITiate is executed. This can cause the time to complete the INIT command to
exceed 1 minute.

248 HP E1415 Command Reference Chapter 6

Parameters

Comments

Usage

[SENSe]

Parameter Parameter Range of Default
Name Type Values Units
range numeric (flt32) see comments VDC
ch list channel list (string) 100 - 163 none

® Strain measurements require the use of Bridge Completion Signal
Conditioning Plug-Ons.

® Bridge Completion SCPs provide the strain measurement bridges and their
excitation voltage sources. ch_list specifies the voltage sensing channels that
are to measure the bridge outputs. M easuring channels on aBridge Completion
SCP only returns that SCP's excitation source voltage.

® The <range> parameter: The HP E1415 has five ranges. .0625VDC, .25VDC,
1VDC, 4VDC, and 16VDC. To select arange, simply specify the range value
(for example, 4 selectsthe 4VDC range). If you specify avalue larger than
one of thefirst four ranges, the HP E1415 selects the next higher range (for
example, 4.1 selectsthe 16V DC range). Specifying avalue larger than 16
generates an error. Specifying 0 selects the lowest range (.0625V DC).
Specifying AUTO selects auto range. The default range (no range parameter
specified) is auto range.

® |f you are using amplifier SCPs, you should set them first and keep their
settingsin mind when specifying arange setting. For instance, if your expected
signal voltage isto be approximately .1V DC and the amplifier SCP for that

channel hasagain of 8, you must set <range> no lower than 1VDC or an input
out-of-range condition will exist.

® The channel calibration command (* CAL?) calibrates the excitation voltage
source on each Bridge Completion SCP,

® When Accepted: Not while INITiated
® Related Commands: *CAL?, [SENSE:]STRAIN...

® *RST Condition: SENSE:FUNC:VOLT 0,(@100:163)

FUNC:STRAIN 1,(@100:,105,107) quarter bridge sensed at channels 0, 5,

and 7

[SENSe:]FUNCtion: TEMPerature

[SENSe:]JFUNCtion: TEMPerature <type>,<sub_type>,[<range>](@<ch_list>)
links channelsto an EU conversion for temperature based on the sensor specified in
typeand sub_type. Not for sensingther mocoupler eferencetemperature(for that,
use the SENS:REF <type>,<sub_type>,(@<channel>) command).

Chapter 6

HP E1415 Command Reference 249

[SENSe]

Parameters

Comments

Parameter Parameter Range of Default
Name Type Values Units
type discrete (string) RTD | THERmistor | TCouple none

sub_type numeric (float32) | for RTD use 85|92 none

numeric (float32) | for THER use 2250 | 5000 | 10000 Ohms

discrete (string) | for TC use CUSTom | E | EEXT | none
JIK|N|R|S|T

range numeric (float32) see comments VDC

ch list channel list (string) 100 - 163 none

® Resistance temperature measurements (RTDs and THERmistors) require the
use of Current Source Sigha Conditioning Plug-Ons. The following table
shows the Current Source setting that must be used for the following RTDs
and Thermistors:

MAX (488pA) | for RTD and THER,2250

MIN (30pA) for THER,5000 and THER,10000

® The <range> parameter: The HP E1415 hasfive ranges. .0625VDC, .25VDC,
1VDC, 4VvDC, and 16VDC. To select arange, simply specify the range value
(for example, 4 selectsthe 4vDC range). If you specify avalue larger than
one of the first four ranges, the HP E1415 selects the next higher range (for
example, 4.1 selectsthe 16V DC range). Specifying avalue larger than 16
generates an error. Specifying 0 selects the lowest range (.0625VDC).
Specifying AUTO selects auto range. The default range (no range parameter
specified) is auto range.

® |f you are using amplifier SCPs, you should set them first and keep their
settings in mind when specifying arange setting. For instance, if your expected
signal voltage is to be approximately .1V DC and the amplifier SCP for that
channel hasagain of 8, you must set <range> no lower than 1VDC or an input
out-of-range condition will exist.

® The sub_type parameter: values of 85 and 92 differentiate between 100 Ohm
(@ 0°C) RTDs with temperature coefficients of 0.00385 and and 0.00392
Ohm/Ohm/°C respectively. The sub_type values of 2250, 5000, and 10000
refer to thermistors that match the Omega 44000 series temperature response
curve. These 44000 series thermistors are selected to match the curve within
0.1 or 0.2°C. For thermistors sub_type may be specified in Kohms (kohm).

The sub_type EEX Tended applies to E type thermocouples at 800°C and
above.

CUSTom is pre-defined as Type K, with no reference junction compensation
(reference junction assumed to be at 0 °C).

® The* CAL? command calibrates temperature channels based on Current

250 HP E1415 Command Reference

Chapter 6

[SENSe]

Source SCP and Sense Amplifier SCP setup at the time of execution. If SCP
settings are changed, those channels are no longer calibrated. * CAL? must be
executed again.

® See “Linking Input Channels to EU Conversion” on page 64.
® \When Accepted: Not while INITiated

® Related Commands: * CAL?, OUTP.CURR (for RTDs and Thermistors),
SENS.REF, and SENS:REF. TEMP (for Thermocouples)

® *RST Condition: SENSE:FUNC:VOLT AUTO,(@100:163)

Usage Link two channelsto the K type thermocoupl e temperature conversion

SENS:FUNC:TEMP TCOUPLEK,(@101,102)
Link channel 0 to measure reference temperature using 5K thermistor

SENS:REF THER,5000,(@100)

[SENSe:]FUNCtion:TOTalize

[SENSe:]FUNCtion:TOTalize <ch_list> sets the SENSe function to TOTalize for
channelsin <ch _list>.

Parameters
Parameter Parameter Range of Default
Name Type Values Units
ch list string 100 - 163 none
Comments ® The totalize function counts rising edges of digital transitions at

Freguency/Totalize SCP channels. The counter is 24 bits wide and can count
up to 16,777,215.

® The SENS:TOT:RESET:MODE command controls which events will reset the
counter.

® |f the channels specified are not on a Frequency/Totalize SCP, an error will be
generated.

® Related Commands: SENS:TOT:RESET:MODE, INPUT:POLARITY

® *RST Condition: SENS:FUNC:COND and INP:POL NORM for al digital
SCP channels.

Usage SENS:FUNC:TOT (@134) channel 34 is a totalizer

[SENSe:]JFUNCtion:VOLTage[:DC]

[SENSe:]FUNCtion:VOLTage[:DC] [<range>,](@<ch_list>) links the specified

Chapter 6 HP E1415 Command Reference 251

[SENSe]

channelsto return DC voltage.

Parameters
Parameter Parameter Range of Default
Name Type Values Units
range numeric (float32) see comments VDC
ch list channel list (string) 100 - 163 none

Comments ® The <range> parameter: The HP E1415 hasfive ranges. .0625VDC, .25VDC,
1VDC, 4vDC, and 16VDC. To select arange, simply specify the range value
(for example, 4 selectsthe 4VDC range). If you specify avalue larger than
one of the first four ranges, the HP E1415 selects the next higher range (for
example, 4.1 selectsthe 16V DC range). Specifying avalue larger than 16
causes an error. Specifying 0 selects the lowest range (.0625VDC).
Specifying AUTO selects auto range. The default range (no range parameter
specified) is auto range.

® |f you are using amplifier SCPs, you should set them first and keep their
settings in mind when specifying arange setting. For instance, if your expected
signal voltage is to be approximately .1V DC and the amplifier SCP for that

channel hasagain of 8, you must set <range> no lower than 1VDC or an input
out-of-range condition will exist.

® The* CAL?command calibrates channels based on Sense Amplifier SCP setup
at the time of execution. If SCP settings are changed, those channels are no
longer calibrated. * CAL? must be executed again.

® See “Linking Input Channels to EU Conversion” on page 64.

® When Accepted: Not while INITiated

® Related Commands: *CAL?, INPUT:GAIN...

¢ *RST Condition: SENSE:FUNC:VOLT AUTO,(@100:163)

Usage FUNC:VOLT (@140:163) Channels 40 - 63 measure voltage in
auto-range (defaulted)

[SENSe:]REFerence

[SENSe:]REFerence <type>,<sub_type>,[<range>](@<ch_list>) links channel
in <ch_list> to the reference junction temperature EU conversion based on type and
sub_type. When scanned, the resultant value is stored in the Reference Temperature
Register, and by default the FIFO and CVT. Thisis aresistance temperature
measurement and uses the on-board 122 pA current source.

Note The reference junction temperature value generated by scanning the reference
channel is stored in the Reference Temperature Register. Thisreferencetemperature

252 HP E1415 Command Reference Chapter 6

Parameters

Comments

[SENSe]

is used to compensate all subsequent thermocouple measurements until the register
is overwritten by another reference measurement or by specifying a constant
reference temperature with the SENSE:REF: TEM P command. If used, the reference
junction channel must be scanned before any thermocouple channels. Use the
SENSE:REF:CHANNEL S command to place the reference measuring channel into
the scan list ahead of the thermocouple measuring channels.

Parameter Parameter Range of Default
Name Type Values Units
type discrete (string) THERmistor | RTD | CUSTom none

sub_type numeric (float32) for THER use 5000 Ohm
numeric (float32) for RTD use 85|92 none

for CUSTomuse 1 none

range numeric (float32) See comments VDC
ch list channel list (string) 100 - 163 none

® See “Linking Input Channels to EU Conversion” on page 64.

® The <range> parameter: The HP E1415 hasfive ranges. .0625VDC, .25VDC,
1VDC, 4VvDC, and 16VDC. To select arange, simply specify the range value
(for example, 4 selectsthe 4VDC range). If you specify avalue larger than
one of the first four ranges, the HP E1415 selects the next higher range (for
example, 4.1 selectsthe 16V DC range). Specifying avalue larger than 16
causes an error. Specifying 0 selects the lowest range (.0625VDC).
Specifying AUTO selects auto range. The default range (no range parameter
specified) is auto range.

® |f you are using amplifier SCPs, you should set them first and keep their
settings in mind when specifying arange setting. For instance, if your expected
signal voltage isto be approximately .1V DC and the amplifier SCP for that
channel hasagain of 8, you must set <range> no lower than 1VDC or an input
out-of-range condition will exist.

® The <type> parameter specifies the sensor type that will be used to determine
the temperature of the isothermal reference panel. <type> CUSTom is
pre-defined as Type E with 0°C reference junction temp and is not
re-defineable.

® For <type> THERmistor, the <sub_type> parameter may be specified in ohms
or kohm.

® The * CAL? command calibrates resistance channels based on Current Source
SCP and Sense Amplifier SCP setup at the time of execution. If SCP settings
are changed, those channels are no longer calibrated. * CAL? must be executed

Chapter 6

HP E1415 Command Reference 253

[SENSe]
again.
® Related Commands; SENSE:FUNC: TEMP

® *RST Condition: Reference temperatureis0 °C

Usage sense the reference temperature on channel 20 using an RTD
SENSE:REF RTD,92,(@120)

[SENSe:]REFerence:CHANnNels

[SENSe:]REFerence:CHANnels (@<ref_channel>),(@<ch_list>) causeschannel
specified by <ref _channel> to appear in the scan list just before the channel (s)
specified by <ch_list>. Thiscommand is used to include the thermocoupl e reference
temperature channel in the scan list before other thermocouple channels are

measured.
Parameters
Parameter Parameter Range of Default
Name Type Values Units
ref_channel channel list (string) 100 - 163 none
ch list channel list (string) 100 - 163 none
Comments ® Use SENS:FUNC:.TEMP to configure channels to measure thermocoupl es.

Then use SENS:REF to configure one or more channels to measure an

isothermal reference temperature. Now use SENS:REF:CHAN to group the

reference channel with its thermocouple measurement channelsin the scan list.
® |f thermocouple measurements are made through more than one isothermal

reference panel, you will set up areference channel for each. Execute the

SENS:REF.CHAN command for each reference/measurement channel group.
® Related commands: SENS:FUNC: TEMP, SENS:REF

® *RST Condition: Scan List contains no channel references.

Usage SENS:FUNC:TEMP TC,E,.0625,(@108:115) E type TCson channels 8 through 15

SENS:REF THER,5000,1,(@106) Reference chisthermistor at channel 6
SENS:REF RTD,85,.25,(@107) Reference ch is RTD at channel 7
SENS:REF:CHAN (@106),(@108:111) Thermistor measured before chs 8 - 11
SENS:REF:CHAN (@107),(@112:115) RTD measured before chs 12 - 15

[SENSe:]REFerence: TEMPerature

[SENSe:]REFerence: TEMPerature <degrees_c> storesafixedreferencejunction
temperature in the Reference Temperature Register. Use when the thermocouple
reference junction is kept at a controlled temperature.

254 HP E1415 Command Reference Chapter 6

[SENSe]

Note Thisreference temperature is used to compensate all subsequent thermocouple
measurements until the register is overwritten by another SENSE:REF. TEMP value
or by scanning a channel linked with the SENSE:REFERENCE command. If used,
SENS.REF.- TEMP must be executed before scanning any thermocouple channels.

Parameters
Parameter Parameter Range of Default
Name Type Values Units
degrees ¢ numeric (float32) -126 to +126 none
Comments ® This command is used to specify to the HP E1415 the temperature of a

controlled temperature thermocoupl e reference junction.
® When Accepted: Not while INITiated
® Related Commands: FUNC:TEMP TC...

® *RST Condition: Reference temperatureis0 °C

Usage SENSE:REF:TEMP 40 subsequent thermocoupl e conversion will

assume compensation junction at
40 degrees C

[SENSe:]STRain:EXCitation

[SENSe:]STRain:EXCitation <excite_v>,(@<ch_list>) specifies the excitation
voltage value to be used to convert strain bridge readings for the channels specified
by <ch_list>. This command does not control the output voltage of any source.

Parameters
Parameter Parameter Range of Default
Name Type Values Units
excite v numeric (flt32) .01-99 volts
ch list channel list (string) 100 - 163 none
Comments ® <ch_list> must specify the channel used to sense the bridge voltage, not the

channel position on a Bridge Completion SCP.

® Related Commands: SENSE:STRAIN:..., SENSE:FUNC:STRAIN...

* *RST Condition: 3.9V

Usage STRAIN:EXC 4,(@100:107) set excitation voltage for channels 0

through 7

Chapter 6 HP E1415 Command Reference 255

[SENSe]

[SENSe:]STRain:EXCitation?

[SENSe:]STRain:EXCitation? (@<channel>) returns the excitation voltage value
currently set for the sense channel specified by <channel>.

Parameters
Parameter Parameter Range of Default
Name Type Values Units
channel channel list (string) 100 - 163 none
Comments ® Returned Value: Numeric value of excitation voltage. The C-SCPI typeis
flt32.
® <channel> must specify a single channel only.
® Related Commands: STRAIN:EXCitation
Usage STRAIN:EXC? (@107) query excitation voltage for channel 7
enter statement here returns the excitation voltage set by
STREEXC

[SENSe:]STRain:GFACtor

[SENSe:]STRain:GFACtor <gage_factor>,(@<ch_list>) specifies the gage factor
to be used to convert strain bridge readings for the channels specified by <ch list>.

Parameters
Parameter Parameter Range of Default
Name Type Values Units
gage factor numeric (flt32) 1-5 none
ch list channel list (string) 100 - 163 none
Comments ® <ch_list> must specify the channel used to sense the bridge voltage, not the
channel position on a Bridge Completion SCP.
® Related Commands: SENSE:STRAIN:GFAC?, SENSE:FUNC:STRAIN...
® *RST Condition: Gage factor is 2
Usage STRAIN:GFAC 3,(@100:107) set gage factor for channels 0 through 7

[SENSe:]STRain:GFACtor?

[SENSe:]STRain:GFACtor? (@<channel>) returnsthe gagefactor currently set for
the sense channel specified by <channel>.

256 HP E1415 Command Reference Chapter 6

[SENSe]

Parameters
Parameter Parameter Range of Default
Name Type Values Units
channel channel list (string) 100 - 163 none

Comments ® Returned Value: Numeric value of gage factor. The C-SCPI typeis flt32.
® <channel> must specify a single channel only.

* Related Commands: STRAIN:GFACTOR

Usage STRAIN:GFAC? (@107) query gage factor for channel 7
enter statement here returns the gage factor set by STR:GFAC

[SENSe:]STRain:POISson

[SENSe:]STRain:POISson <poisson_ratio>,(@<ch_list>) setsthePoissonratioto
be used for EU conversion of values measured on sense channels specified by

<ch_list>.
Parameters
Parameter Parameter Range of Default
Name Type Values Units
poisson _ratio numeric (ft32) Ad-5 none
ch list channel list (string) 100 - 163 none
Comments ® <ch_list> must specify channels used to sense strain bridge output, not channel
positions on a Bridge Completion SCP.
® Related Commands; FUNC:STRAIN..., STRAIN:POISson?
® *RST Condition: Poisson ratiois.3
Usage STRAIN:POISSON .5,(@124:131) set Poisson ratio for sense channels 24

through 31

[SENSe:]STRain:POISson?

[SENSe:]STRain:POISson? (@<channel>) returns the Poisson ratio currently set
for the sense channel specified by <channel>.

Parameters
Parameter Parameter Range of Default
Name Type Values Units
channel channel list (string) 100 - 163 none

Chapter 6 HP E1415 Command Reference 257

[SENSe]

Comments ® Returned Value: numeric value of the Poisson ratio. C-SCPI typeisflt32.

® <channel> must specify a single channel only.

® Related Commands; FUNC:STRAIN..., STRAIN:POISSON

Usage STRAIN:POISSON? (@131)

enter statement here

[SENSe:]STRain:UNSTrained

query for the Poisson ratio specified for

sense channel 31

enter the Poisson ratio value

[SENSe:]STRain:UNSTrained <unstrained_v>,(@<ch_list>) specifiesthe
unstrained voltage valueto be used to convert strain bridge readings for the channels
specified by <ch_list>. This command does not control the output voltage of any

source.
Parameters
Parameter Parameter Range of Default
Name Type Values Units
unstrained v numeric (flt32) -16 through +16 volts
ch list channel list (string) 100 - 163 none
Comments ® Use a voltage measurement of the unstrained bridge sense channel to

determine the correct value for unstrained_v.

® <ch_list> must specify the channel used to sense the bridge voltage, not the
channel position on a Bridge Completion SCP.

® Related Commands; SENSE:STRAIN:UNST?, SENSE:FUNC:STRAIN...

® *RST Condition: Unstrained voltage is zero

Usage STRAIN:UNST .024,(@100)

[SENSe:]STRain:UNSTrained?

set unstrained voltage for channel 0

[SENSe:]STRain:UNSTrained? (@<channel>) returns the unstrained voltage
value currently set for the sense channel specified by <channel>. Thiscommand does
not make a measurement.

Parameters
Parameter Parameter Range of Default
Name Type Values Units
channel channel list (string) 100 - 163 none
Comments ® Returned Value: Numeric value of unstrained voltage. The C-SCPI type is

258 HP E1415 Command Reference

Chapter 6

[SENSe]

flt32.
® <channel> must specify a single channel only.

®* Related Commands; STRAIN:UNST

Usage STRAIN:UNST? (@107) guery unstrained voltage for channel 7
enter statement here returns the unstrained voltage set by
STR:.UNST

[SENSe:]TOTalize:RESet:MODE

[SENSe:]TOTalize:RESet:MODE <select>,<ch_list> sets the mode for resetting
totalizer channelsin <ch_list>.

Parameters
Parameter Parameter Range of Default

Name Type Values Units

select discrete (string) INIT | TRIGger seconds

ch list string 100 - 163 none

Comments ® Inthe INIT mode the total is reset only when the INITiate command is

executed. In the TRIGger mode the total is reset every time anew scanis
triggered.

® |f the channels specified are not on a Frequency/Totalize SCP, an error will be
generated.

® Related Commands: SENS:FUNC:TOT, INPUT:POLARITY

® *RST Condition: SENS.TOT:RESET:MODE INIT

Usage SENS:TOT:RESET:MODE TRIG,(@134) totalizer at channel 34 resets at each
trigger event

[SENSe:]TOTalize:RESet:MODE?

[SENSe:]TOTalize:RESet:MODE? <channel> returns the reset mode for the
totalizer channel in <channel>.

Parameters
Par ameter Parameter Range of Default
Name Type Values Units
channel string 100 - 163 none
Comments ® Channel must specify a single channel.

Chapter 6 HP E1415 Command Reference 259

[SENSe]

® |f the channel specified is not on a frequency/totalize SCP, an error will be
generated.

® Returned Value: returns INIT or TRIG. The typeisstring.

260 HP E1415 Command Reference Chapter 6

SOURce

The SOURce command subsystem allows configuring output SCPsaswell aslinking

channels to output functions.

Subsystem Syntax SOURce
‘M
:STATe 1| 0| ON | OFF,(@<ch_list>)
:STATe? (@<channel>)
:FUNCtion
[:SHAPe]
:CONDition (@<ch_list>)
:PULSe (@<ch_list>)
:SQUare (@<ch_list>)
:PULM
:STATe 1| 0| ON | OFF,(@<ch_list>)
:STATe? (@<channel>)
‘PULSe
:PERIiod <period>,(@<ch_list>)
:PERiod? (@<channel>)
‘WIDTh <pulse_width>,(@<ch_list>)
‘WIDTh? (@<channel>)

SOURce:FM[:STATe]

SOURce:FM[:STATe] <enable>,(@<ch_list>) enables the Frequency Modulated

mode for a PUL Se channel.
Parameters
Par ameter Parameter Range of Default
Name Type Values Units
enable boolean (uint16) 1|0|ON | OFF none
ch list string 100 - 163 none

Comments ® This command is coupled with the SOURce:PULM:STATE command. If the
FM stateis ON then the PULM stateis OFF. If the PULM stateis ON then the
FM stateis OFF. If both the FM and the PULM states are OFF then the PUL Se

channel isin the single pulse mode.

® |f the channels specified are not on a Frequency/Totalize SCP, an error will be

generated.

® Use SOURce:FUNCtion[:SHAPe]:SQUare to set FM pulse train to 50% duty

cycle. Use SOURce:PUL Se:PERIod to set the period

® *RST Condition: SOUR:FM:STATE OFF, SOUR:PULM:STATE OFF,

Chapter 6 HP E1415 Command Reference 261

SOURce

SENS:FUNC:COND and INP:POL for al digital SCP channels

® Related Commands: SOUR:PULM[:STATe], SOUR:PUL S:POL arity,
SOUR:PUL S:PERiod, SOUR:FUNCJ[:SHAPe]:SQUare

® The variable frequency control for this channel is provided by the algorithm
language. When the algorithm executes an assignment statement to this
channel, the value assigned will be the frequency setting. For example:

0143 = 2000 /* set channel 43 to 2KHz */

SOURce:FM:STATe?

SOURce:FM:STATe? (@<channel>) returns the frequency modulated mode state

for a PUL Se channel.
Parameters
Par ameter Parameter Range of Default
Name Type Values Units
channel string 100 - 163 none
Comments ® Channel must specify a single channel.

® |f the channel specified is not on a Frequency/Totalize SCP, an error will be
generated.

® Returned Value: returns 1 (ON) or 0 (OFF). Thetypeisuint16.

SOURce:FUNCtion[:SHAPe]:CONDition

SOURce:FUNCtion[:SHAPe]:CONDition (@<ch_list>) setsthe SOURce function
to output digital patternsto bitsin <ch_list>.

Parameters
Par ameter Parameter Range of Default
Name Type Values Units
ch list string 100 - 163 none

Comments ®* The HP E1533 SCP sources 8 digital bits on the channel specified by this
command. The HP E1534 SCP can source 1 digital bit on each of the the
channels specified by this command.

SOURce:FUNCtion[:SHAPe]:PULSe

SOURce:FUNCtion[:SHAPe]:PULSe (@<ch_list>) setsthe SOURce function to
PUL Sefor the channelsin <ch_list>.

262 HP E1415 Command Reference Chapter 6

SOURce

Parameters
Par ameter Parameter Range of Default
Name Type Values Units
ch list string 100 - 163 none

Comments ® This PUL Se channel function is further defined by the SOURce:FM:STATe
and SOURce:PULM:STATe commands. If the FM state is enabled then the
frequency modulated mode is active. If the PULM state is enabled then the
pulse width modulated mode is active. If both the FM and the PULM states are
disabled then the PUL Se channel isin the single pulse mode.

SOURCce:FUNCtion[:SHAPe]:SQUare

SOURce:FUNCtion[:SHAPe]:SQUare (@<ch_list>) sets the SOURce function to
output a square wave (50% duty cycle) on the channelsin <ch_list>.

Parameters
Parameter Parameter Range of Default
Name Type Values Units
ch list string 100 - 163 none
Comments ® The frequency control for these channelsis provided by the algorithm

language function:.

0143 = 2000 /* set channel 43 to 2KHz */

SOURCce:PULM[:STATe]

SOURce:PULM[:STATe] <enable>,(@<ch_list>) enable the pulse width
modulated mode for the PUL Se channelsin <ch_list>.

Parameters
Parameter Parameter Range of Default
Name Type Values Units
enable boolean (uint16) 1|0|ON | OFF none
ch list string 100 - 163 none
Comments ® This command is coupled with the SOURce:FM command. If the FM stateis

enabled then the PULM state is disabled. If the PULM stateis enabled then the
FM stateisdisabled. If both the FM and the PULM states are disabled then the
PUL Se channel isin the single pulse mode.

® |f the channels specified are not on a Frequency/Totalize SCP, an error will be
generated.

Chapter 6 HP E1415 Command Reference 263

SOURce

* *RST Condition: SOUR:PULM:STATE OFF

SOURce:PULM:STATe?

SOURce:PULM[:STATe]? (@<channel>) returnsthe pulse width modulated mode
state for the PUL Se channel in <channel>.

Parameters
Parameter Parameter Range of Default
Name Type Values Units
channel string 100 - 163 none

Comments Channel must specify asingle channel.

® Returned Value: returns ON or OFF. Thetypeisstring.

SOURce:PULSe:PERIod

SOURce:PULSe:PERiod <period>,(@<ch_list>) setsthe fixed pulse period value
on a pulse width modulated pulse channel. This sets the frequency (1/period) of the
pul se-width-modul ated pulse train.

Parameters

Parameter Parameter Range of Default
Name Type Values Units

period numeric (float32) 25E-6 to 7.8125E-3 seconds
(resolution 0.238p1sec)

ch list string 100 - 163 none

Comments ® |f the channels specified are not on a Frequency/Totalize SCP, an error will be
generated.

® *RST Condition: SOUR:FM:STATE OFF and SOUR:PULM:STATE OFF

® Related Commands: SOUR:PULM:STATE, SOUR:PUL S:POL arity

® The variable pulse-width control for this channel is provided by the algorithm
language. When the algorithm executes an assignment statement to this

channel, the value assigned will be the pulse-width setting. For example:

0140 =.0025 /* set channel 43 pulse-width to 2.5 msec */

Usage SOUR:PULS:PER .005,(@140) set PWM pulsetrain to 200 Hz on
channel 40

SOURce:PULSe:PERIiod?

264 HP E1415 Command Reference Chapter 6

SOURce

SOURce:PULSe:PERiod? (@<channel>) returns the fixed pulse period value on
the pulse width modulated pulse channel in <channel>.

Parameters
Par ameter Parameter Range of Default
Name Type Values Units
channel string 100 - 163 none
Comments ® |f the channels specified are not on a Frequency/Totalize SCP, an error will be
generated.

® Returned Value: numeric period. The typeisfloat32.

SOURce:PULSe:WIDTh

SOURce:PULSe:WIDTh <pulse_width>,(@<ch_list>) setsthe fixed pulse width
value on the frequency modulated pulse channelsin <ch_list>.

Parameters

Par ameter Parameter Range of Default
Name Type Values Units

pulse width numeric (float32) 7.87E-6to 7.8125E-3 seconds
(238.4E-9 resolution)

ch list string 100 - 163 none

Comments ® |f the channels specified are not on a Frequency/Totalize SCP, an error will be
generated.

® *RST Condition: SOUR:FM:STATE OFF and SOUR:PULM:STATE OFF

® Related Commands: SOUR:PULM:STATE, SOUR:PUL S:POL arity

® The variable frequency control for this channel is provided by the algorithm
language. When the algorithm executes an assignment statement to this

channel, the value assigned will be the frequency setting. For example:

0143 = 2000 /* set channel 43 to 2KHz */

Usage SOUR:PULS:WIDTH 2.50E-3,(@143) set fixed pulse width of 2.5 msec on
channel 43

SOURce:PULSe:WIDTh?

SOURce:PULSe:WIDTh? (@<ch_list>) returns the fixed pulse width value on a
frequency modulated pulse channel.

Chapter 6 HP E1415 Command Reference 265

SOURce

Parameters
Par ameter Parameter Range of Default
Name Type Values Units
channel string 100 - 163 none
Comments ® Channel must specify a single channel.

® |f the channels specified are not on a Frequency/Totalize SCP, an error will be

generated.

® Returned Value: returns the numeric pulse width. Thetypeis float32.

266 HP E1415 Command Reference

Chapter 6

STATus

The STATus subsystem communi cates with the SCPI defined Operation and
Questionable Data status register sets. Each is comprised of a Condition register, a
set of Positive and Negative Transition Filter registers, an Event register, and an
Enableregister. Condition registers allow you to view the current rea -time states of
their status signal inputs (signal states are not latched). The Positive and Negative
Transition Filter registers allow you to control the polarity of change from the
Condition registers that will set Event register bits. Event registers contain latched
representations of signal transition eventsfrom their Condition register. Querying an
Event register reads and then clears its contents, making it ready to record further
event transitionsfrom its Condition register. Enableregistersare used to select which
signalsfrom an Event register will belogically ORed together to form asummary bit
in the Status Byte Summary register. Setting abit to onein an Enableregister enables
the corresponding bit from its Event register.

Note For a complete discussion See “Using the Status System” on page 95.
Condition Positive/Negative Event Enable
Register Transition Filter Register Register
. "I:].
—m= Bit0 L—L:l
= Logical
—m— Bit1 [I OR
—|_=1 .
Summary Bit to
Status Byte
— = Bit 14
—#= Bit 15

Figure 6-4. General Status Register Organization

Chapter 6

HP E1415 Command Reference 267

STATus

Initializing the Thefollowing table showstheeffect of Power-on, *RST, * CLSand STATus.PRESet

Status System

on the status system register settings.

SCPI SCPI SCPI Event IEEE 488.2 IEEE 488.2
Transition Enable Registers Registers Registers
Filters Registers ESE and SRE | SESR and STB
Power-on preset preset clear clear clear
*RST none none none none none
*CLS none none clear none clear
STAT:PRESET preset preset none none none
Subsystem Syntax STATus
:OPERation
:CONDition?
:ENABIe <enable_mask>
‘ENABIle?
[:EVEN{]?

:NTRansition <transition_mask>
:NTRansition?
:PTRansition <transition _mask>
:PTRansition?

:PRESet

:QUEStionable
:CONDition?
:ENABIle <enable _mask>
‘ENABIle?
[:EVENTL]?
:NTRansition <transition_mask>
:NTRansition?
:PTRansition <transition _mask>
:PTRansition?

The Status system contains four status groups

® Operation Status Group

® Questionable Data Group
® Standard Event Group

® Status Byte Group

This SCPI STATus subsystem communicates with the first two groups while
|EEE-488.2 Common Commands (documented later in this chapter) communicate
with Standard Event and Status Byte Groups.

268 HP E1415 Command Reference Chapter 6

STATus

Weighted Bit Register queriesarereturned using decimal weighted bit values. Enable registers can
Values beset using decimal, hex, octal, or binary. The following table can be used to help
set Enable registers using decimal, and decode register queries.

Status System Decimal Weighted Bit Values

bit# 15 14 13 12 11 10 9 8 7 16|5|14|13(2|1|0
value | alwaysO | 16,384 | 8,192 | 4,096 | 2,048 |1,024| 512 | 256 | 128 |64|32|16(8|4|2|1

The Operation Status Group

The Operation Status Group indicates the current operating state of the HP E1415.
The bit assignments are:

Bit # | decvalue | hex value Bit Name Description

0 1 00014¢ Calibrating Set by CAL:TARE, and CAL:SETup. Cleared by
CAL:TARE?, and CAL:SETup?. Set while*CAL?
executes and reset when * CAL? completes. Set by
CAL:CONFIG:VOLT or CAL:CONFIG:RES, cleared
by CAL:VAL:VOLT or CAL:VAL:RES.

1-3 Not used

4 16 001044 Measuring Set when instrument INITiated. Cleared when
instrument returnsto Trigger Idle State.

5-7 Not used

8 256 01004¢ Scan Complete Set when each passthrough a Scan List completed (may

not indicate all measurements have been taken when
TRIG:COUNT >1).

9 512 020044 SCP Trigger An SCP has sourced atrigger event (future
HP 1415 SCPs)
10 1024 040046 FIFO Half Full The FIFO contains at least 32,768 readings
11 2048 08004¢ Algorithm Interrupted | Theinterrupt() function was called in an algorithm
12-15 Not used

STATus:OPERation:CONDition?

STATus:OPERation:CONDition? returnsthe decimal weighted value of the bits set
in the Condition register.

Comments ® The Condition register reflects the real-time state of the status signals. The
signals are not latched; therfore past events are not retained in this register (see
STAT:OPER:EVENT?).

Chapter 6 HP E1415 Command Reference 269

STATus

® Returned Value: Decimal weighted sum of all set bits. The C-SCPI typeis
uint16.

® Related Commands: *CAL?, CAL:ZERO, INITiate:IMMediate],
STAT:OPER:EVENT?, STAT:OPER:ENABLE, STAT:OPER:ENABLE?

® *RST Condition: No Change

Usage STATUS:OPERATION:CONDITION? Enter statement will return value from
condition register

STATus:OPERation:ENABIe

STATus:OPERation:ENABIle <enable_mask> setshitsin the Enable register that
will enable corresponding bits from the Event register to set the Operation summary

bit.
Parameters
Parameter Parameter Range of Default
Name Type Values Units
enable_mask numeric (uint16) 0-32767 none

Comments ® Enable_mask may be sent as decimal, hex (#H), octal (#Q), or binary (#B).

* VX1 Interrupts. When Operation Status Group bits 4, 8, 9, 10, or 11 are
enabled, VXI card interrupts will occur as follows:

When the event corresponding to bit 4 occurs and then is cleared, the card
will generate aV X1 interrupt. When the event corresponding to bit 8, 9, 10,
or 11 occurs, the card will generate a V X| interrupt.

NOTE: In C-SCPI, the C-SCPI overlap mode must be on for V X1bus
interrupts to occur.

® Related Commands; *STB?, SPOLL, STAT:OPER:COND?,
STAT:OPER:EVENT?, STAT:OPER:ENABLE?

® Cleared By: STAT:PRESet and power-on.

® *RST Condition: No change

Usage STAT:OPER:ENABLE 1 Set bit 0 in the Operation Enable register

270 HP E1415 Command Reference Chapter 6

STATus

STATus:OPERation:ENABIle?

STATus:OPERation:ENABIle? returnsthe value of bits set in the Operation Enable
register.

Comments ® Returned Value: Decimal weighted sum of all set bits. The C-SCPI typeis
uint16.

* Related Commands; *STB?, SPOLL, STAT:OPER:COND?,
STAT:OPER:EVENT?, STAT:OPER:ENABLE

® *RST Condition: No change

Usage STAT:OPER:ENABLE? Enter statement returns current value of
bits set in the Operation Enable register

STATus:OPERation[:EVENTt]?

STATus:OPERation[:EVENt]? returnsthe decimal weighted value of the bitssetin
the Event register.

Comments ® When using the Operation Event register to cause SRQ interrupts,
STAT:OPER:EVENT? must be executed after an SRQ to re-enable future
interrupts.

® Returned Value: Decimal weighted sum of all set bits. The C-SCPI typeis
uint16.

® Related Commands; *STB?, SPOLL, STAT:OPER:COND?,
STAT:OPER:ENABLE, STAT:OPER:ENABLE?

® Cleared By: *CLS, power-on, and by reading the register.

® *RST Condition: No change

Usage STAT:OPER:EVENT? Enter statement will return the value of
bits set in the Operation Event register
STAT:OPER? Same as above

STATus:OPERation:NTRansition

STATus:OPERation:NTRansition <transition_mask> sets bitsin the Negative
Transition Filter (NTF) register. When abit in the NTF register is set to one, the
corresponding bit in the Condition register must changefrom aoneto azeroin order
to set the corresponding bit in the Event register. When abit in the NTF register is
zero, anegative transition of the Condition register bit will not change the Event
register bit.

Chapter 6 HP E1415 Command Reference 271

STATus

Parameters
Par ameter Parameter Range of Default
Name Type Values Units
transition_mask | numeric (uint16) 0-32767 none

Comments ® transition_mask may be sent as decimal, hex (#H), octal (#Q), or binary (#B).

® |f both the STAT:OPER:PTR and STAT:OPER:NTR registers have a
corresponding bit set to one, any transition, positive or negative will set the
corresponding bit in the Event register.

® |f neither the STAT:OPER:PTR or STAT:OPER:NTR registers have a
corresponding bit set to one, transitions from the Condition register will have
no effect on the Event register.

® Related Commands: STAT:OPER:NTR?, STAT:OPER:PTR

® Cleared By: STAT:PRESet and power-on.

® *RST Condition: No change

Usage STAT:OPER:NTR 16 When "Measuring" bit goesfalse, set bit 4
in Status Operation Event register.

STATus:OPERation:NTRansition?

STATus:OPERation:NTRansition? returns the value of bits set in the Negative
Transition Filter (NTF) register.

Comments ® Returned Value: Decimal weighted sum of all set bits. The C-SCPI typeis
uint16.

* Related Commands; STAT:OPER:NTR

® *RST Condition: No change

Usage STAT:OPER:NTR? Enter statement returns current value of
bits set in the NTF register

STATus:OPERation:PTRansition

STATus:OPERation:PTRansition <transition_mask> sets hits in the Positive
Transition Filter (PTF) register. When abit in the PTF register is set to one, the
corresponding bit in the Condition register must changefrom azeroto aonein order
to set the corresponding bit in the Event register. When a bit in the PTF register is
zero, a positive transition of the Condition register bit will not change the Event
register hit.

272 HP E1415 Command Reference Chapter 6

STATus

Parameters
Par ameter Parameter Range of Default
Name Type Values Units
transition_mask | numeric (uint16) 0-32767 none

Comments ® transition_mask may be sent as decimal, hex (#H), octal (#Q), or binary (#B).

® |f both the STAT:OPER:PTR and STAT:OPER:NTR registers have a
corresponding bit set to one, any transition, positive or negative will set the
corresponding bit in the Event register.

® |f neither the STAT:OPER:PTR or STAT:OPER:NTR registers have a
corresponding bit set to one, transitions from the Condition register will have
no effect on the Event register.

® Related Commands: STAT:OPER:PTR?, STAT:OPER:NTR

® Setto all onesby: STAT:PRESet and power-on.

® *RST Condition: No change

Usage STAT.OPER:PTR 16 When "Measuring” bit goestrue, set bit 4
in Status Operation Event register.

STATus:OPERation:PTRansition?

STATus:OPERation:PTRansition? returns the value of bits set in the Positive
Transition Filter (PTF) register.

Comments ® Returned Value: Decimal weighted sum of all set bits. The C-SCPI typeis
uint16.

* Related Commands, STAT:OPER:PTR

® *RST Condition: No change

Usage STAT:OPER:PTR? Enter statement returns current value of
bits set in the PTF register

STATus:PRESet

STATus:PRESet sets the Operation Status Enable and Questionable Data Enable
registersto 0. After executing this command, none of the eventsin the Operation
Event or Questionable Event registerswill be reported asasummary bit in either the
Status Byte Group or Standard Event Status Group. STATus.PRESet does not clear
either of the Event registers.

Comments * Related Commands: *STB?, SPOLL, STAT:OPER:ENABLE,

Chapter 6 HP E1415 Command Reference 273

STATus

STAT:OPER:ENABLE?, STAT:QUES:ENABLE, STAT:QUES.ENABLE?

® *RST Condition: No change

Usage STAT:PRESET Clear both of the Enable registers

The Questionable Data Group

The Questionable Data Group indicateswhen errors are causing lost or questionable
data. The bit assignments are:

Bit # | decvalue | hex value Bit Name Description
0-7 Not used
8 256 01004¢ Calibration Lost At *RST or Power-on Control Processor has found a

checksum error in the Calibration Constants. Read
error(s) with SY ST:ERR? and re-calibrate area(s) that

lost constants.
9 512 02004¢ Trigger Too Fast Scan not complete when another trigger event received.
10 1024 04004¢ FIFO Overflowed Attempt to store more than 65,024 readingsin FIFO.
11 2048 08004¢ Over voltage Detected | If theinput protection jumper has not been cut, theinput
on Input relays have been opened and * RST is required to reset
the module. Overvoltage will also generate an error.
12 4096 10004¢ VME Memory The number of readings taken exceeds VME memory
Overflow space.
13 8192 20004¢ Setup Changed Channel Calibration in doubt because SCP setup may

have changed since last *CAL? or CAL:SETup
command. (*RST aways sets this bit).

14-15 Not used

STATus:QUEStionable:CONDition?

STATus:QUEStionable: CONDition? returnsthe decimal weighted value of thebits
set in the Condition register.

Comments ® The Condition register reflects the real-time state of the status signals. The
signals are not latched; therfore past events are not retained in this register (see
STAT:QUES.EVENT?).

® Returned Value: Decimal weighted sum of all set bits. The C-SCPI typeis
uint1e.

® Related Commands; CAL:VALUE:RESISTANCE,
CAL:VALUE:VOLTAGE, STAT:QUES.EVENT?, STAT:QUES.ENABLE,

274 HP E1415 Command Reference Chapter 6

STATus

STAT:QUES.ENABLE?

® *RST Condition: Bit 13, "Setup Changed" issetto 1

Usage STATUS:QUESTIONABLE:CONDITION? Enter statement will return value from
condition register

STATus:QUEStionable:ENABIe

STATus:QUEStionable:ENABle <enable_mask> sets hitsin the Enable register
that will enable corresponding bits from the Event register to set the Questionable

summary bit.
Parameters
Parameter Parameter Range of Default
Name Type Values Units
enable_mask numeric (uint16) 0-32767 none

Comments ® Enable_mask may be sent as decimal, hex (#H), octa (#Q), or binary (#B).

® VVXI Interrupts: When bits 9, 10, or 11 are enabled and C-SCPI overlap mode
ison (or if you are using non-compiled SCPI), VX1 card interrupts will be
enabled. When the event corresponding to bit 9, 10, or 11 occurs, the card
will generate a VX1 interrupt.

® Related Commands. *STB?, SPOLL, STAT:QUES.COND?,
STAT:QUES.EVENT?, STAT:QUES.ENABLE?

® Cleared By: STAT:PRESet and power-on.

® *RST Condition: No change

Usage STAT:QUES:ENABLE 128 Set hit 7 in the Questionable Enable
register

STATus:QUEStionable:ENABIe?

STATus:QUEStionable:ENABIle? returns the value of bits set in the Questionable
Enable register.

Comments ® Returned Value: Decimal weighted sum of all set bits. The C-SCPI typeis
uint16.

® Related Commands; *STB?, SPOLL, STAT:QUES.COND?,
STAT:QUES.EVENT?, STAT:QUES.ENABLE

® *RST Condition: No change

Chapter 6 HP E1415 Command Reference 275

STATus

Usage STAT:QUES:ENABLE? Enter statement returns current value of
bits set in the Questionable Enable
register

STATus:QUEStionable[:EVENt]?

STATus:QUEStionable[:EVENTt]? returnsthedecimal weighted value of the bits set
in the Event register.

Comments ® \When using the Questionable Event register to cause SRQ interrupts,
STAT:QUES.EVENT? must be executed after an SRQ to re-enable future
interrupts.

® Returned Value: Decimal weighted sum of all set bits. The C-SCPI typeis
uint1e.

® Cleared By: *CLS, power-on, and by reading the register.

® Related Commands. *STB?, SPOLL, STAT:QUES.COND?,
STAT:QUES.ENABLE, STAT:QUES.ENABLE?

Usage STAT:QUES:EVENT? Enter statement will return the value of
bits set in the Questionable Event register
STAT:QUES? Same as above

STATus:QUEStionable:NTRansition

STATus:QUEStionable:NTRansition <transition_mask> setsbitsintheNegative
Transition Filter (NTF) register. When abit in the NTF register is set to one, the
corresponding bit in the Condition register must change from aoneto azeroin order
to set the corresponding bit in the Event register. When abit in the NTF register is
Zero, anegative transition of the Condition register bit will not change the Event

register bit.
Parameters
Parameter Parameter Range of Default
Name Type Values Units
transition_mask | numeric (uint16) 0-32767 none

Comments ® transition_mask may be sent as decimal, hex (#H), octal (#Q), or binary (#B).

® |f both the STAT:QUES.PTR and STAT:QUES:NTR registers have a
corresponding bit set to one, any transition, positive or negative will set the
corresponding bit in the Event register.

® |f neither the STAT:QUES.PTR or STAT:QUES.NTR registers have a
corresponding bit set to one, transitions from the Condition register will have
no effect on the Event register.

276 HP E1415 Command Reference Chapter 6

STATus
* Related Commands: STAT:QUES.NTR?, STAT:QUES.PTR
® Cleared By: STAT:PRESet and power-on.

® *RST Condition: No change

Usage STAT:QUES:NTR 1024 When "FIFO Overflowed" bit goes false,
set bit 10 in Satus Questionable Event
register.

STATus:QUEStionable:NTRansition?

STATus:QUEStionable:NTRansition? returnsthe value of bits set in the Negative
Transition Filter (NTF) register.

Comments ® Returned Value: Decimal weighted sum of all set bits. The C-SCPI typeis
uint16.

® Related Commands. STAT:QUES.NTR

® *RST Condition: No change

Usage STAT:QUES:NTR? Enter statement returns current value of
bits set in the NTF register

STATus:QUEStionable:PTRansition

STATus:QUEStionable:PTRansition <transition_mask> setsbitsinthe Positive
Transition Filter (PTF) register. When a bit in the PTF register is set to one, the
corresponding bit in the Condition register must change from azeroto aonein order
to set the corresponding bit in the Event register. When a bit in the PTF register is
zero, a positive transition of the Condition register bit will not change the Event

register bit.
Parameters
Par ameter Parameter Range of Default
Name Type Values Units
transition_mask | numeric (uint16) 0-32767 none

Comments ® transition_mask may be sent as decimal, hex (#H), octal (#Q), or binary (#B).

® |f both the STAT:QUES.PTR and STAT:QUES.NTR registers have a
corresponding bit set to one, any transition, positive or negative will set the
corresponding bit in the Event register.

® |f neither the STAT:QUES.PTR or STAT:QUES:NTR registers have a
corresponding bit set to one, transitions from the Condition register will have
no effect on the Event register.

Chapter 6 HP E1415 Command Reference 277

STATus
® Related Commands: STAT:QUES.PTR?, STAT:QUES.NTR
® Settoal onesby: STAT:PRESet and power-on.

® *RST Condition: No change

Usage STAT:QUES:PTR 1024 When "FIFO Overflowed" bit goes true,
set bit 10 in Status Operation Event
register.

STATus:QUEStionable:PTRansition?

STATus:QUEStionable:PTRansition? returns the value of bits set in the Positive
Transition Filter (PTF) register.

Comments ® Returned Value: Decimal weighted sum of all set bits. The C-SCPI typeis
uint16.

® Related Commands: STAT:QUES.PTR

® *RST Condition: No change

Usage STAT:OPER:PTR? Enter statement returns current value of
bits set in the PTF register

278 HP E1415 Command Reference Chapter 6

SYSTem

The SY STem subsystem is used to query for error messages, types of Signal
Conditioning Plug-ons (SCPs), and the SCPI version currently implemented.

Subsystem Syntax SYSTem
:CTYPe? (@<channel>)
:ERRor?
‘VERSion?

SYSTem:CTYPe?

SYSTem:CTYPe? (@<channel>) returnsthe identification of the Signal
Conditioning Plug-On installed at the specified channel.

Parameters

Parameter Parameter Range of Default
Name Type Values Units

channel channel list (string) 100 - 163 none

Comments ® channel must specify asingle channel only.

® Returned Value: An example of the response string format is:
HEWLETT-PACKARD,E1415 Option <option number and description>
SCP,0,0

The C-SCPI typeis string. For specific response string, refer to the
appropriate SCP manual. If <channel> specifies a position where no SCPis

installed, the module returns the response string:
0,No SCP at this Address,0,0

Usage SYST.CTYPE? (@100) return SCP typeinstall at channel 0

SYSTem:ERRor?

SYSTem:ERRor? returns the latest error entered into the Error Queue.

Comments ® SY ST:ERR? returns one error message from the Error Queue (returned error is
removed from queue). To return all errorsin the queue, repeatedly execute
SY ST:ERR? until the error message string = +0, "No error"

® Returned Value: Errors are returned in the form:
+<error number>, "<error message string>"

® RST Condition: Error Queue is empty.

Chapter 6 HP E1415 Command Reference 279

SYSTem

Usage SYST:ERR? returns the next error message fromthe
Error Queue

SYSTem:VERSion?

SYSTem:VERSion? returnsthe version of SCPI thisinstrument complies with.
Comments ® Returned Value: String "1990". The C-SCPI typeis string.

Usage SYST.VER? Returns "1990"

280 HP E1415 Command Reference Chapter 6

TRIGger

The TRIGger command subsystem controls the behavior of the trigger system once
itisinitiated (see INITiate command subsystem).

Figure 6-5 showsthe overall Trigger System model. The shaded areashowsthe ARM
subsystem portion.

ARM:SOURce <source>

TRIGger:TIMer <interval>

Trigger

ARM Source Selector

TRIGger:SOURce <source>

1
1
1
1
1
1
1
1
1
1
|
I

Timer !
I
I
I
I
I
:
I
' TIMer
1

8
g BUS --1-- [l e ittt 8
3]
s EXTernal 2 Internal
§ HOLD s Trigger Trigger Signal
;_2 IMMediate 3 Enable
E TTLTrg<n> %
4 =
% SCP Trg =
Trigger
Counter

TRIGger:COUNt <count>
Figure 6-5. Logical Trigger Model

Caution

Algorithms execute at most once per trigger event. Should
trigger events cease (external trigger source stops) or are
ignored (TRIGger:COUNt reached), algorithms execution will
stop. In this case control outputs are left at the last value set by
the algorithms. Depending on the process, this uncontrolled
situation could even be dangerous. Make certain that you have
put your process into a safe state before you halt (stop
triggering) execution of a controlling algorithm.

The HP E1535 Watchdog Timer SCP was specifically developed
to automatically signal that an algorithm has stopped
controlling a process. Use of the Watchdog Timer is
recommended for critical processes.

Chapter 6

HP E1415 Command Reference 281

TRIGger

Event Sequence Figure 6-6 shows how the module responds to various trigger/arm configurations.

Trigger Idle
State
Initiated
State
TRIG:SOUR
yes TIMer?
no
Waiting for
Arm
yes
ARM Event
no < Count NOTE: For continuous algorithm
1g. Counter= execution use TRIG:COUNT 0 or INF.
{RIG:COUNT? This is the default setting.
Reset and
Start Timer Waiting for
Trigger
Trigger Event
Scan Inputs
and Increment

Trig. Counter

Execute Control
Loop Algorithm

Update Control
Outputs

Figure 6-6. Trigger/Scan Sequence Diagram

Subsystem Syntax
TRIGger
:COUNt <trig_count>
:COUNLt?
[:IMMediate]
:SOURce BUS|EXTernal |HOLD | SCP | IMMediate | TIMer | TTLTrg<n>
:SOURce?
‘TIMer
[:PERiod] <trig_interval>
[:PERiod]?

282 HP E1415 Command Reference Chapter 6

TRIGger

TRIGger:COUNt

TRIGger:COUNt <trig_count> setsthe number of timesthe module can be
triggered before it returns to the Trigger Idle State. The default count is 0 (same as
INF) so accepts continuous triggers. See Figure 6-6 on page 282

Parameters
Parameter Parameter Range of Default
Name Type Values Units
Trig_count numeric (Uint16) 0to 65535 | INF none
(string)

Comments * When trig_count is set to 0 or INF, the trigger counter is disabled. Once
INITiated the module will return to the Waiting For Trigger State after each
trigger event. The ABORT (preferred) and *RST commands will return the
moduleto the Trigger Idle State. ABORT is preferred since * RST also returns
other module configurations to their default settings.

® The default count is0
® Related Commands: TRIG:COUNT?
® *RST Condition: TRIG:COUNT 0
Usage TRIG:COUNT 10 Set the module to make 10 passes all
enabled algorithms.
TRIG:COUNT 0 Set the module to accept unlimited

triggers (the default)

TRIGger:COUNt?

TRIGger:COUNTt? returns the currently set trigger count.

Comments * |f TRIG:COUNT?returns 0, thetrigger counter is disabled and the module will
accept an unlimited number of trigger events.

® Returned Value: Numeric 0 through 65,535. The C-SCPI typeisint32.
® Related Commands: TRIG:COUNT

® *RST Condition: TRIG:COUNT? returns O

Usage TRIG:COUNT? Query for trigger count setting
enter statement Returns the TRIG: COUNT setting

TRIGger[:IMMediate]

TRIGger[:IMMediate] causesonetrigger whenthe moduleis set to the TRIG:SOUR

Chapter 6 HP E1415 Command Reference 283

TRIGger
BUS or TRIG:SOUR HOLD mode.

Comments ® This command is equivalent to the * TRG common command or the
|[EEE-488.2 "GET" bus command.

* Related Commands: TRIG:SOURCE

Usage TRIG:IMM Use TRIGGER to start a measurement
scan

TRIGger:SOURce

TRIGger:SOURce <trig_source> configures the trigger system to respond to the

trigger event.
Parameters
Parameter Parameter Range of Default
Name Type Values Units
trig_source discrete (string) | BUS|EXT |HOLD | IMM | SCP|TIM none
| TTLTrg<n>
Comments ® The following table explains the possible choices.
BUS TRIGger[:IMMediate], *TRG, GET (for HP-IB)
EXTernal “TRG" signal on terminal module
HOLD TRIGger[:IMMediate]
IMMediate The trigger event is always satisfied.
SCP SCP Trigger Bus (future HP or SCP Breadboard)
TIMer The internal trigger timer
TTLTrg<n> The VXlbus TTLTRG lines (n=0 through 7)

Note The ARM system only exists while TRIG:SOUR is TIMer. When TRIG:SOUR is
not TIMer, SCPI compatibility requires that ARM:SOUR be IMM or an Error
-221," Settings conflict" will be generated.

®* While TRIG:SOUR isIMM, you need only INITiate the trigger system to start
ameasurement scan.

* When Accepted: Before INIT only.

284 HP E1415 Command Reference Chapter 6

TRIGger

®* Related Commands; ABORt, INITiate, *TRG

® *RST Condition: TRIG:SOUR TIMER

Usage TRIG:SOUR EXT Hardware trigger input at Connector
Module

TRIGger:SOURce?

TRIGger:SOURce? returns the current trigger source configuration.

® Returned Value: Discrete; one of BUS, EXT, HOLD, IMM, SCP, TIM, or
TTLTO through TTLT7. The C-SCPI typeisstring. Seethe TRIG:SOUR
command for more response data information.

Usage TRIG:SOUR? ask HP E1415 to return trigger source
configuration

TRIGger: TIMer[:PERiod]

TRIGger:TIMer[:PERIiod] <trig_interval> setsthe interval between scan triggers.
Used with the TRIG:SOUR TIMER trigger mode.

Parameters

Parameter Parameter Range of Default
Name Type Values Units

trig_interval numeric (float32) 100E-6 to0 6.5536 | seconds
(string) MIN | MAX

Comments ® |n order for the TRIG:TIMER to start it must be Armed. For information on
timer arming see the ARM subsystem in this command reference.

® The default interval is 10E-3 seconds. interval may be specified in seconds,
milliseconds (ms), or microseconds (us). For example; .0016, 1.6ms or
1600us. The resolution for interval is 100 y second.

* When Accepted: Before INIT only.

® Related Commands: TRIG:SOUR TIMER, ARM:SOUR, ARM:IMM, INIT,
TRIG:SOUR?, ALG:EXPL:TIME?

® *RST Condition: TRIG:TIM 1.0E-3

Usage TRIG:TIMER 1.0E-1 Set the module to scan inputs and execute
all algorithms every 100 mS
TRIG:TIMER 1 Set the modul eto scan inputs and execute
all algorithms every second

Chapter 6 HP E1415 Command Reference 285

TRIGger

TRIGger:TIMer[:PERiod]?

TRIGger: TIMer[:PERiod]? returns the currently set Trigger Timer interval.
Comments ® Returned Value: Numeric 1 through 6.5536. The C-SCPI typeisfloat32.
® Related Commands: TRIG:TIMER

® *RST Condition: 1.0E-4

Usage TRIG:TIMER? Query trig timer
enter statement Returns the timer setting

286 HP E1415 Command Reference Chapter 6

IEEE-488.2 Common Command Reference

*CAL?

Note

*CAL? Calibration command. The calibration command causes the Channel
Calibration function to be performed for every module channel. The Channel
Calibration function includes calibration of A/D Offset, and Gain and Offset for al
64 channels. This calibration is accomplished using internal calibration references.
The* CAL? command causes the module to calibrate A/D offset and gain, and all
channel offsets. Thismay take many minutesto complete. The actual timeit will take
your HP E1415 to complete * CAL ? depends on the mix of SCPsinstalled. * CAL
performs literally hundreds of measurements of the internal calibration sources for
each channel and must allow 17 time constants of settling wait each time a filtered
channel’s calibrations source value is changed. The * CAL procedureisinternally
very sophisticated and results in an extremely well calibrated module.

To perform Channel Calibration on multiple HP E1415s, use CAL:SETup.

® Returned Value:

Value Meaning Further Action
0 Ca OK None
-1 Cal Error Query the Error Queue (SY ST:ERR?)
See Error Messages in Appendix B
page 335

The C-SCPI type for thisreturned valueisint16.
*When Accepted: Not while INITiated

® Related Commands: CALibration:SETup, CALibration:SETup?,
CALibration:STORe ADC

® CAL:STOR ADC storesthe calibration constants for * CAL? and CAL:SETup
into non-volatile memory.

® Executing this command does not alter the module’s programmed state
(function, range, etc.). It does however clear STAT:QUES.COND? register bit
13.

If Open Transducer Detect (OTD) is enabled when * CAL?is executed, the module
will disable OTD, wait 1 minuteto alow channelsto settle, perform the calibration,
and then re-enable OTD. If your program turns off OTD before executing * CAL?, it
should also wait 1 minute for settling.

Chapter 6

HP E1415 Command Reference 287

IEEE-488.2 Common Command Reference

*CLS

*CLS Clear Status Command. The * CLS command clears all status event registers
(Standard Event Status Event Register, Standard Operation Status Event Register,
Questionable Data Event Register) and the instrument’s error queue. This clearsthe
corresponding summary bits (bits 3, 5, & 7) in the Status Byte Register. * CLS does
not affect the enable bitsin any of the status register groups. (The SCPI command
STATus:PRESet does clear the Operation Status Enable and Questionable Data
Enableregisters.) * CL Sdisablesthe Operation Completefunction (* OPC command)
and the Operation Complete Query function (* OPC? command).

*DMC

*DMC <name>,<cmd_data> Define Macro Command. Assignsone, or asequence
of commands to a named macro.

The command sequence may be composed of SCPI and/or Common commands.

<name> may bethe sameasa SCPI command, but may not bethe sameasaCommon
command. When a SCPI named macro is executed, the macro rather than the SCPI
command is executed. To regain the function of the SCPI command, execute* EMC
0 command.

<cmd_data> is sent asarbitrary block program data (see “Arbitrary Block Program
and Response Data” on page 160).

*EMC

*EMC <enable> Enable Macro Command. When <enable> is non-zero, macros are
enabled. Wheneanable> is zero, macros are disabled.

*EMC?

*EMC? Enable Macro query. Returns either 1 (macros are enabled), or 0 (macros are
disabled).

*ESE

*ESE <mask> Standard Event Status Enable Register Command. Enables one or
more events in the Standard Event Status Register to be reported in bit 5 (the Standard
Event Status Summary Bit) of the Status Byte Register. You enable an event by
specifying its decimal weight fermask>. To enable more than one event (bit),

288 HP E1415 Command Reference Chapter 6

IEEE-488.2 Common Command Reference

specify the sum of the decimal weights. The C-SCPI type for <mask> isint16.

Bit # 7 6 5 4 3 2 1 0
Weighted Value 128 64 32 16 8 4 2 1
Event power-On| User |Command|Execution| Device Dependent | Query | Request | Operation
Request Error Error Error Error | Control | Complete
*ESE?

*ESE? Standard Event Status Enable Query. Returnstheweighted sum of all enabled
(unmasked) bitsin the Standard Event Status Register. The C-SCPI type for this
returned value isint16.

*ESR?

*ESR? Standard Event Status Register Query. Returns the weighted sum of all set
bitsin the Standard Event Status Register. After reading the register, * ESR? clears
the register. The events recorded in the Standard Event Status Register are
independent of whether or not those events are enabled with the * ESE command to
set the Standard Event Summary Bit in the Status Byte Register. The Standard Event
bits are described in the * ESE command. The C-SCPI typefor thisreturned valueis
int16.

*GMC?

*GMC? <name> Get Macro query. Returns arbitrary block response data which
contains the command or command sequence defined for <name>. For more
information see “Arbitrary Block Program and Response Data” on page 160.

*IDN?

*IDN? Identity. Returns the device identity. The response consists of the following
four fields (fields are separated by commas):

® Manufacturer

* Model Number

® Serial Number (returns O if not available)
® Driver Revision (returns O if not available)

*DN? returns the following response strings depending on model and options:
HEWLETT-PACKARD,E1415A ,<serial number>,<revison number>

® The C-SCPI type for thisreturned valueis string.

Chapter 6 HP E1415 Command Reference 289

IEEE-488.2 Common Command Reference

*LMC?

Note Therevisionwill vary withtherevision of thedriver softwareinstalledinyour system.

Thisisthe only indication of which version of the driver isinstalled.

*OPC

*LMC? Learn Macros query. Returnsaquoted string namefor each currently defined
macro. If more than one macro is defined, the strings are separated by commas (,). If
no macro is defined, * LM C? returns anull string.

*OPC?

Note

*OPC Operation Complete. Causes an instrument to set bit 0 (Operation Complete

Message) in the Standard Event Status Register when all pending operationsinvoked
by SCPI commands have been completed. By enabling this bit to be reflected in the
Status Byte Register (* ESE 1 command), you can ensure synchronization between

the instrument and an external computer or between multiple instruments.

Do not use * OPC to determine when the CAL:SETUP or CAL:TARE commands
have completed. Instead, use their query forms CAL:SETUP? or CAL:TARE?.

*PMC

Note

*OPC? Operation Complete Query. Causes an instrument to place a 1 into the
instrument’s output queue when all pending instrument operations invoked by SCPI
commands are finished. By requiring your computer to read this response before
continuing program execution, you can ensure synchroni zation between one or more
instruments and the computer. The C-SCPI type for this returned vaue isint16.

Do not use * OPC? to determine when the CAL:SETUP or CAL: TARE commands
have completed. Instead, use their query forms CAL:SETUP? or CAL:TARE?.

*PMC Purge Macros Command. Purges all currently defined macros.

290 HP E1415 Command Reference Chapter 6

*RMC

IEEE-488.2 Common Command Reference

*RMC <name> Remove individual Macro Command. Removes the named macro
command.

*RST

*RST Reset Command. Resets the HP E1415 asfollows:

® Erases dl algorithms

* All dlementsin the Input Channel Buffer (1100 - 1163) set to zero.

® All elementsin the Output Channel Buffer (O100-O163) set to zero

® Defines al Analog Input channels to measure voltage

® Configures dl Digital 1/O channels as inputs

® Resets HP E1531 and HP E1532 Analog Output SCP channels to zero

* When Accepted: Not while INITiated

WARNING

Note the change in character of output channels when *RST is
received. Digital outputs change to inputs (appearing now is
1kW to +3v, a TTL one), and analog control outputs change to
zero (current or voltage). Keep these changes in mind when
applying the HP E1415 to your system, or engineering a system
for operation with the HP E1415. Also note that each analog
output channels disconnects for 5-6 milliseconds to discharge
to zero at each *RST.

It isn’t difficult to have the HP E1415 signal your system when
*RST is executed. A solution that can provide signals for
several types of failures as well as signaling when *RST is
executed is the HP E1535 Watchdog Timer SCP. The Watchdog
SCP even has an input through which you can command all of
the HP E1415’s channels to disconnect from your system.

® Setsthe trigger system as follows:

-- TRIGGER:SOURCE TIMER
-- TRIGGER:TIMER 10E-3
-- TRIGGER:COUNT O (infinite)
-- ARM:SOURCE IMMEDIATE
* SAMPLE:TIMER 10E-6
® Aborts all pending operations, returnsto Trigger Idle state
® Disables the * OPC and * OPC? modes
* MEMORY:VME:ADDRESS 240000; MEMORY:VME:STATE OFF;
MEMORY:VME:SIZE O
® Sets STAT:QUES:COND? hit 13

*RST does not affect:

HP E1415 Command Reference

291

IEEE-488.2 Common Command Reference

*SRE

® Cdlibration data

® The output queue

® The Service Request Enable (SRE) register
® The Event Status Enable (ESE) register

*SRE <mask> Service Request Enable. When aservice request event occurs, it sets
acorresponding bit in the Status Byte Register (thishappenswhether or not the event
has been enabled (unmasked) by * SRE). The* SRE command allowsyou to identify
which of these events will assert an HP-IB service request (SRQ). When an event is
enabled by * SRE and that event occurs, it sets a bit in the Status Byte Register and
issues an SRQ to the computer (setsthe HP-1B SRQ linetrue). Y ou enable an event
by specifying itsdecimal weight for <mask>. To enable morethan one event, specify
the sum of the decimal weights. Refer to "The Status Byte Register"r for atable
showing the contents of the Status Byte Register. The C-SCPI type for <mask> is
int16.

Bit #

7 6 5 4 3 2 1 0

Weighted Value

128 64 32 16 8 4 2 1

Event

Operation | Request | Standard | Message | Questionable| not used | not used | not used
Status | Service | Event | Available Status

*SRE?

*STB?

*SRE? Status Register Enable Query. Returns the weighted sum of all enabled
(unmasked) events (those enabled to assert SRQ) in the Status Byte Register. The
C-SCPI typefor thisreturned valueisint16.

*TRG

*STB? Status Byte Register Query. Returns the weighted sum of all set bitsin the
Status Byte Register. Refer to the * ESE command earlier in this chapter for atable
showing the contents of the Status Byte Register. * STB? doesnot clear bit 6 (Service
Reguest). The Message Available bit (bit 4) may be cleared as aresult of reading the
responseto * STB?. The C-SCPI type for thisreturned value isint16.

*TRG Trigger. Triggers an instrument when the trigger source is set to bus
(TRIG:SOUR BUS command) and the instrument isin the Wait for Trigger state.

292 HP E1415 Command Reference Chapter 6

IEEE-488.2 Common Command Reference

*TST?

*TST? Sef-Test. Causes an instrument to execute extensive internal self-tests and
returns aresponse showing the results of the self-test.

Notes 1. During thefirst 5 minutes after power is applied, * TST? may fail. Allow the

module to warm-up before executing * TST?.

2. Module must be screwed securely to mainframe.

3. The HP E1415 C-SCPI driver for MS-DOS® implements two versions of
*TST. The default version is an abbreviated self test that executes only the
Digital Tests. By loading an additional object file, you can execute the full
self test as described below. See the documentation that comes with the
HP E1415 C-SCPI driver for MS-DOS®.

Comments ® Returned Value:

Value Meaning Further Action

0 *TST? OK None

-1 *TST? Error Query the Error Queue (SY ST:ERR?)
for error 3052. See explanation below.

® |F error 3052 'Self test failed. Test info in FIFO’ isreturned. A FIFO value of 1
through 99 or >=300 is afailed test number. A value of 100 through 163 isa
channel number for the failed test. A value of 200 through 204 isan A/D range
number for the failed test where 200=.0625, 201=.25V, 202=1V, 203=4V, and
204=16V ranges. For example DATA:FIFO? returns the values 72 and 108.
Thisindicates that test number 72 failed on channel 8.

Test numbers 20, 30-37, 72, 74-76, and 80-93 may indicate a problem with a
Signal Conditioning Plug-on.

For tests 20, and 30-37, remove all SCPs and seeif * TST? passes. If s0,
replace SCPs one at atime until you find the one causing the problem.

For tests 72, 74-76, and 80-93, try to re-seat the SCP that the channel
number(s) points to, or move the SCP and see if the failure(s) follow the SCP.
If the problems move with the SCP, replace the SCP.

These are the only tests where the user should troubleshoot a problem. Other
tests which fail should be referred to qualified repair personnel.

Note Executing * TST?returns the module to its *RST state. *RST causes the FIFO data
format to return to its default of ASC,7. If you want to read the FIFO for *TST?
diagnostic information and you want that datain other than the ASCII,7 format, be
certain to set the data FIFO format to the desired format (FORMAT command) after

Chapter 6 HP E1415 Command Reference 293

IEEE-488.2 Common Command Reference

completion of * TST? but before executing a SENSE:DATA:FIFO: query command.

® The C-SCPI typefor this returned value isint16.

® Following * TST?, the module is placed in the *RST state. This returns many
of the module's programmed states to their defaults. See “*RST” on page 291.
for a list of the module's default states.

® *TST? performs the following tests on the HP E1415 and installed Signal
Conditioning Plug-ons:

DIGITAL TESTS:
Test# Description

1-3: Writes and reads patternsto registersviaA16 & A24

4-5: Checks FIFO and CVT

6: Checks measurement complete (M easuring) status bit

7 Checks operation of FIFO half and FIFO full IRQ generation
8-9: Checks trigger operation

ANALOG FRONT END DIGITAL TESTS:
Test# Description

20: Checksthat SCP ID makes sense

30-32: Checksrelay driver and fet mux interface with EU CPU

33,71: Checks opening of all relays on power down or input overvoltage
34-37. Check fet mux interface with A/D digital

ANALOG TESTS:
Test# Description
40-42: Checksinternal voltage reference
ANALOG TESTS: (continued)
Test# Description

43-44: Checks zero of A/D, internal cal source and relay drives
45-46: Checksfine offset calibration DAC

47-48: Checks coarse offset calibration DAC

49: Checksinternal + and -15V supplies

50-53: Checksinternal calibration source

54-55: Checksgain calibration DAC

56-57. Checks that autorange works

58-59: Checksinternal current source

60-63: Checksfront end and A/D noise and A/D filter

294 HP E1415 Command Reference Chapter 6

65-70:

71.
72-73:
74.
75:
76:
80:
81:
82:
83:
84.
86:
87.
88:
89:
0:
91:
92:
93:

IEEE-488.2 Common Command Reference

Checks zeroing of coarse and fine offset calibration DACs

Checks current source and CAL BUS relay and relay drives and OHM
relay drive

See 33

Checks continuity through SCPs, bank relays and relay drivers
Checks open transducer detect

Checks current leakage of the SCPs

Checks voltage offset of the SCPs

Checks mid-scale strain dac output. Only reports first channel of SCP.
Checks range of strain dac. Only reportsfirst channel of SCP.

Checks noise of strain dac. Only reports first channel of SCP.

Checks bridge completion leg resistance each channel.

Checks combined leg resistance each channel.

Checks current source SCP's OFF current.

Checks current source SCP's current dac mid-scale.

Checks current source SCP's current dac range on HI and LO ranges.
Checks current source compliance

Checks strain SCP's Wagner Voltage contral.

Checks autobal ance dac range with input shorted.

Sample and Hold channel holds value even when input value changed.
Sample and Hold channel held value test for droop rate.

ANALOG OUTPUT AND DIGITAL I/O TESTS

301:
302
303:
304
305:
306:
307:
308:

313:
315:
316:
317:
318:

331
332.
333
334
335:
336:
337:

Current and Voltage Output SCPsdigital DAC control.
Current and Voltage Output SCPsDAC noise.

Current Output SCPoffset

Current Output SCPgain shift

Current Output SCPoffset

Current Output SCPlinearity

Current Output SCPlinearity

Current Output SCPturn over

Voltage Output SCPoffset
Voltage Output SCPoffset
Voltage Output SCPlinearity
Voltage Output SCPlinearity
Voltage Output SCPturn over

Digital 1/0 SCPinternal digital interface
Digital I/0 SCPuser input

Digital I/0 SCPuser input

Digital 1/0 SCPuser output

Digital I/0 SCPuser output

Digital 1/0 SCPoutput current

Digital 1/0 SCPoutput current

Chapter 6

HP E1415 Command Reference 295

IEEE-488.2 Common Command Reference

341.
342.
343.
344.
345:
346.
347
348.
349:.

350:
351.
352:
353:
354.

*WAI

Freg/PWM/FM SCPinternal data0 register
Freg/PWM/FM SCPinternal datal register
Freg/PWM/FM SCPinternal parameter register
Freq/PWM/FM SCPon-board processor self-test
Freg/PWM/FM SCPon-board processor self-test
Freg/PWM/FM SCPuser inputs

Freg/PWM/FM SCPuser outputs
Freg/PWM/FM SCPoutputs ACTive/PASSive
Freg/PWM/FM SCPoutput interrupts

Watchdog SCPenabl e/disable timer
Watchdog SCPrelay drive and coil closed
Watchdog SCPrelay drive and coil open
Watchdog SCPI/O Disconnect line
Watchdog SCPI/O Disconnect supply

*WAI Wait-to-continue. Prevents an instrument from executing another command
until the operation begun by the previous command isfinished (sequentia operation).

Note Do not use*WAI to determine when the CAL:SETUP or CAL:TARE commands
have completed. Instead, use their query forms CAL:SETUP? or CAL:TARE?.
CAL:SETUP?and CAL:TARE? return avaue only after the CAL:SETUP or
CAL:TARE operations are complete.

296 HP E1415 Command Reference

Chapter 6

Command Quick Reference

The following tables summarize SCPI and |EEE-488.2 Common (*) commands for
the HP E1415Algorithmic Loop Controller.

Command

SCPI Command Quick Reference

Description

ABORt

ALGorithm
[:EXPLicit]
:ARRay ’'<alg_name>',’<array_name>’,<block_data>

:ARRay? '<alg_name>','<array_name>’'

:DEFine '<alg_name>'[,<swap_size>],’<program_data>’
:SCALar ’'<alg_name>',’<var_name>’,<value>
:SCALar? '<alg_name>',’<var_name>’

:SCAN
:RATio ’'<alg_name>',<ratio>
:RATIi0? '<alg_name>’
:SlZe? '<alg_name>’
:STATe '<alg_name>',ON | OFF
:STATe? '<alg_name>’
:TIME? '<alg_name>' | MAIN
:FUNCtion

:DEFine '<unction_name>',<range>,<offset>,<func_data>
:OUTPut
:DELay <delay> | AUTO
:DELay?
:UPDate
[:IMMediate]
:CHANDRel (@<channel>
‘WINDow <num_updates>
‘WINDow?
ARM
[:IMMediate]
:SOURce BUS | EXT | HOLD | IMM | SCP | TTLTrg<n>
:SOURce?
CALibration
:CONFigure
:RESistance
:VOLTage <ange>, ZERO | FSCale
:SETup
:SETup?
:STORe ADC | TARE

Stops scanning immediately and setstrigger system to idle state (scan listsare
unaffected)

Subsystem to define, configure, and enable loop control agorithms

Defines contents of arrayarray _name> in algorithm <lg_name> or if
<alg_name> is "GLOBALS", defines values global to all algorithms.

Returns block data fromasray_name> in algorithm <lg_name> or if
<alg_name> is "GLOBALS", returns values from a global array.

Defines algorithms or global variables. <program_data> is'C’ source of
algorithm or global declaration.

Defines value of variablevar_name> in algorithm <alg_name> or if
<alg_name> is "GLOBALS", defines a value global to all algorithms.

Returns value from var_name> in algorithm <alg_name> or if <alg_name>
is "GLOBALS", returns a value from global variable.

Sets scan triggers per execution afggname> (send also ALG:UPD)
Returns scan triggers per execution afg< name>

Returns size in words of named algorithm

Enables/disables named algorithm after ALG:UPDATE sent
Returns state of named algorithm
Returns worst case alg execution time. Use "MAIN" for overall time.

Defines a custom conversion function

Sets the delay from scan trigger to start of outputs
Returns the delay from scan trigger to start of outputs

Requests immediate update of algorithm code, variable, or array
Sets dig channel to synch algorithm updates

Sets a window fonum_updates to occur. *RST default is 20

Returns setting for allowable number variable and algorithm updates.

Arm if ARM:SOUR is BUS or HOLD (software ARM)
Specify the source of Trigger Timer ARM
Return current ARM source

Prepare to measure on-board references with an external multimeter
Configure to measure reference resistor

Configure to measure reference voltage range at zero or full scale
Performs Channel Calibration procedure

Returns state of CAL:SETup operation (returns error codes or 0 for O

Store cal constants to Flash RAM for either A/D calibration or those gen
by the CAL:TARE command

)

erated

Chapter 6

HP E1415 Command Reference 297

Command Quick Reference

SCPI Command Quick Reference

Command Description
‘TARE (@<ch_list>) Calibrate out system field wiring offsets
‘RESet Resets cal constants from CAL:TARE back to zero for all channels
‘TARE? Returns state of CAL:TARE operation (returns error codes or O for OK)
CALibration (cont.)
‘VALue
:RESistance <ref_ohms> Send to instrument the val ue of just measured reference resistor
:VOLTage <ref_volts> Send to instrument the val ue of just measured voltage reference
:ZERO? Correct A/D for short term offset drift (returns error codes or 0 for OK)
DIAGnostic
:CALibration
:SETup
[:MODE] 0|1 Set analog DA C output SCP calibration mode
[:MODE]? Return current setting of DAC calibration mode
‘TARe
[:OTD]
[:MODE] 0|1 Set mode to control OTD current during tare calibration
[:MODE]? Return current setting of OTD control during tare calibration
:CHECksum? Perform checksum on Flash RAM and return a1’ for OK, a’0’ for corrupted
or deleted memory contents
:COMMand
:SCPWRITE <reg_addr>,<reg_data> Writes values to SCP registers
:CUSTom

:LINear <table ad range>,<table block>,(@<ch_list>) Loads linear custom EU table

L oads piecewise custom EU table
:PIECewise <table ad range>,<table block>,(@<ch_list>)

:REFerence: TEM Perature Puts the contents of the Reference Temperature Register into the FIFO
:FLOor <range>,(@<ch_list>) Sets the lowest range that autorange can select for the specified channels
:-DUMP Places the autorange floor value for al 64 channelsinto the FIFO
(INTerrupt[:LINe] <intr_line> Sets the V XIbus interrupt line the module will use
(INTerrupt[:LINe]? Returns the VX Ibus interrupt line the module is using

:OTDetect[:STATe] ON | OFF, (@<ch_list>)
:OTDetect[:STATe]? (@<channel>)

Controls "Open Transducer Detect" on SCPs contained in <ch_list>
Returns current state of OTD on SCP containing <channel>

[:DATA]?
INITiate
[:IMMediate]

:QUERY
:SCPREAD? <reg_addr> Returns value from an SCP register
:VERSion? Returns manufacturer, model, serial#, flash revision #, and date
e.g. HEWLETT-PACKARD,E1415B,US34000478,A.04.00,
Wed Jul 08 11:06:22 MDT 1994
FETCh? Return readings stored in VME Memory (format set by FORM cmd)
FORMat
[:DATA] <format>[, <size>] Set format for response data from [SENSe:]DATA?
ASCii[, 7] Seven bit ASCI| format (not as fast as 32-bit because of conversion)
PACKed[, 64] Same as REAL, 64 except NaN, +INF, and -INF formated for HP BASIC
REAL[, 32] |EEE 32-hit floating point (requires no conversion so is fastest)
REAL, 64 |EEE 64-hit floating point (not as fast as 32-bit because of conversion)

Returnsformat: REAL, +32 | REAL, +64 | PACK, +64 | ASC, +7

Put module in Waiting for Trigger state (ready to make one scan)

298 HP E1415 Command Reference

Chapter 6

Command Quick Reference

SCPI Command Quick Reference

Command

Description

INPut
:FILTer
[:LPASS]

:FREQuency <cutoff_freg>,(@<ch_list>)

:FREQuency? (@<channel>)
[:STATe] ON | OFF, (@<channel>)
[:STATe]? (@<channel>)
:GAIN <chan_gain>,(@<ch_list>)
:GAIN? (@<channel>)
:LOW <wvolt_type>,(@<ch_list>)
:LOW? (@<channel>)
:POLarity NORmal | INVerted,(@<ch_list>)
:POLarity? (@<channel>)
MEMory
‘VME
:ADDRess <mem_address>
:ADDRess?
:SIZE <mem_size>
:SIZE?
:STATe 1|0|ON | OFF
:STATe?
OUTPut
:CURRent
:AMPLitude <amplitude>,(@<ch_list>)
:AMPLitude? (@<channel>)
:STATe ON | OFF,(@<ch_list>)
:STATe? (@<channel>)
:POLarity NORmal | INVerted,(@<ch_list>)
:POLarity? (@<channel>)
:SHUNt ON | OFF,(@<ch_list>)
:SHUNLt? (@<channel>)
‘TTLTrg

:SOURce FTRigger | LIMit | SCPlugon | TRIGger

:SOURce?
‘TTLTrg<n>
[:STATe] ON | OFF
[:STATe]?
‘TYPE PASSive | ACTive,(@<ch_list>)
‘TYPE? (@<channel>)
'VOLTage
:AMPLitude <amplitude>,(@<ch_list>)
:AMPLitude? (@<channel>)
ROUTe
:SEQuence
:DEFine? AIN | AOUT | DIN | DOUT
:POINts? AIN |AOUT | DIN | DOUT
SAMPle
:TIMer <num_samples>,(@<ch_list>)
‘TIMer? (@<channel>)

Control filter Signal Conditioning Plug-ons

Sets the cutoff frequency for active filter SCPs
Returns the cutoff frequency for the channel specified
Turn filtering OFF (pass through) or ON (filter)
Return state of SCPfilters
Set gain for amplifier-per-channel SCP
Returns the channel’s gain setting
Controls the connection of input LO on a Strain Bridge (Opt. 21 SCP)
Returns the LO connection for the Strain Bridge at channel
Setsinput polarity on adigital SCP channel
Returns digital polarity currently set for <channel

Specify address of VME memory card to be used as reading storage
Returns address of VME memory card

Specify number of bytes of VM E memory to be used to store readings
Returns number of VME memory bytes all ocate to reading storage
Enable or disable reading storage in VME memory at INIT

Returns state of VME memory, 1=enabled, O=disabled

Set amplitude of Current Source SCP channels

Returns the setting of the Current Source SCP channel

Enable or disable the Current Source SCP channels

Returns the state of the Current Source SCP channel

Sets output polarity on adigital SCP channel

Returns digital polarity currently set for <channel>

Adds shunt resistance to leg of Bridge Completion SCP channels
Returns the state of the shunt resistor on Bridge Completion SCP channel

Sets the internal trigger source that can drive the VXIbus TTLTrg lines
Returns the source of TTLTrg drive.

When module triggered, source aVXlbustrigger on TTLTrg<n>
Returns whether the TTL trigger line specified by n is enabled
sets the output drive type for adigital channel

Returns the output drive type for <channel>

Sets the voltage amplitude on Voltage Output and Strain SCPs
Returns the voltage amplitude setting
Returns comma separated list of channelsinanalog |, O, dig 1, O chlists

Returns number of channels defined in abovelists.

Sets number of samples that will be made on channelsin <ch_list>
Returns number of samples that will be made on channelsin <ch_list>

Chapter 6

HP E1415 Command Reference 299

Command Quick Reference

Command

SCPI Command Quick Reference

Description

[SENSe]
CHANnel
:SETTIing <settle_time>,(@<ch_list>)
:SETTling? (@<channel>)

DATA
:CVTable? (@<ch_list>)
‘RESet
:FIFO
[:ALL]?
:COUNLt?
‘HALF?
‘HALF?
:MODE BLOCK | OVERwrite
:MODE?
:PART? <n_readings>
‘RESet
FREQuency
:APERture <gate_time>,(@<ch_list>)
:APERture? (@<channel>)
FUNCtion
:CONDition (@<ch_list>)
:CUSTom [<range>,](@<ch_list>)

:REFerence [<range>,](@<ch_list>)

‘TC <type>,[<range>,](@<ch_list>)

:FREQuency (@<ch_list>)
:RESistance <excite_current>,[<range>,](@<ch_list>)
:STRain

:FBENding [<range>,](@<ch _list>)

:FBPoisson [<range>,](@<ch_list>)

:FPOisson [<range>,](@<ch_list>)

‘HBENding [<range>,](@<ch_list>)

:HPQOisson [<range>,](@<ch_list>)

[:QUARter] [<range>,](@<ch_list>)

RTD, 85| 92

TCouple, CUST |E|EEXT |J|K[N|S|T

THERmMistor, 2250 | 5000 | 10000
:TEMPerature <sensor_type>,<sub_type>,
[<range>,](@<ch_list>)

:TOTdlize (@<ch_list>)
:‘VOLTage[:DC] [<range>,](@<ch_list>)

Sets the channel settling time for channelsin ch_list
Returns the channel settling time for channel

Returns elements of Current Value Table specified by ch_list
Resets al entriesin the Current Value Table to IEEE "Not-a-number"

Fetch all readings until instrument returns to trigger idle state
Returns the number of measurementsin the FIFO buffer
Returns 1 if at least 32,768 readings are in FIFO, elsereturns 0
Fetch 32,768 readings (half the FIFO) when available

Set FIFO mode.

Return the currently set FIFO mode

Fetch n_readings from FIFO reading buffer when available
Reset the FIFO counter to 0

Sets the gate time for frequency counting

Returns the gate time set for frequency counting
Equate afunction and range with groups of channels
Sets function to sense digital state

Links channels to custom EU conversion table loaded by DIAG:CUST:LIN
or DIAG:CUST:PIEC commands

Links channels to custom reference temperature EU conversion table loaded
by DIAG:CUST:PIEC commands

Links channels to custom temperature EU conversion table loaded by
DIAG:CUST:PIEC, and performs ref temp compensation for <type>

Configure channels to measure frequency
Configure channels to sense resistance measurements
Links measurement channels as having read bridge voltage from:
Full BENding
Full Bending Poisson
Full POisson
Half BENding
Half Poisson
QUARter

RTDs
thermocouples
thermistors

Configure channels for temperature measurement types above:
excitation current comes from Current Output SCP.

Configure channelsto count digital state transitions
Configure channels for DC voltage measurement

300 HP E1415 Command Reference

Chapter 6

Command Quick Reference

SCPI Command Quick Reference

:REFerence <sensor_type>,<sub_type>,[<range>,](@<ch_list>)
:CHANDRels (@<ref_channel>),(@<ch_list>)
:TEMPerature <degrees c>

:STRain
:EXCitation <excite v>,(@<ch_list>)

:STRain
:EXCitation <excite_v>,(@<ch_list>)
:EXCitation? (@<channel>)

:GFACtor <gage factor>,(@<ch_list>)

:GFACtor? (@<channel>)

:POISson <poisson_ratio>,(@<ch_list>)
[SENSe:]STRAIN (continued)

:POISson? (@<channel>)

:UNSTrained <unstrained_v>,(@<ch_list>)

:UNSTrained? (@<channel>)

SOURce
‘FM
[:STATe] 1|0|ON | OFF,(@<ch_list>)
[:STATe]? (@<channel>)
:FUNCtion
[:SHAPe]
:CONDition (@<ch_list>)
:PULSe (@<ch_list>)
:SQUare (@<ch_list>)
:PULM
:STATe 1|0| ON | OFF,(@<ch_list>)
:STATe? (@<channel>)
:PERiod <period>,(@<ch_list>)
:PERiod? (@<channel>)
‘WIDTh <width>,(@<ch_list>)
‘WIDTh? (@<channel>)
STATus
:OPERation

:CONDition?
:ENABIle <enable_mask>
:ENABIe?
[:EVENTt]?
:NTRansition <transition_mask>
:NTRansition?
:PTRansition <transition_mask>
:PTRansition?

‘PRESet

:QUEStionable

:CONDition?

Command Description
RTD, 85|92 RTDs
THERmMistor,5000 thermistors

Configure channel for reference temperature measurements above:
Groups reference temperature channel with TC measurement channels
Specifies the temperature of a controlled temperature reference junction

Specifies the Excitation Voltage by channel to the strain EU conversion

Specifies the Excitation Voltage by channe to the strain EU conversion
Returns the Excitation Voltage set for <channel>

Specifies the Gage Factor by channel to the strain EU conversion
Returns the Gage Factor set for <channel>

Specifies the Poisson Ratio by channel to the strain EU conversion

Returns the Poisson Ratio set for <channel>
Specifies the Unstrained Voltage by channel to the strain EU conversion
Returns the Unstrained Voltage set for <channel>

Configure digital channelsto output frequency modulated signal
Returns state of channels for FM output

Configures channels to output static digital levels
Configures channels to output digital pulse(s)
Configures channels to output 50/50 duty cycle digital pulsetrain

Configure digital channels to output pulse width modulated signal
Returns state of channels for PW modulated output

Sets pulse period for PW modulated signals

Returns pulse period for PW modulated signals

Sets pulse width for FM modulated signals

Returns pulse width setting for FM modulated signals

Operation Status Group: Bit assignments; 0=Calibrating, 4=Measuring,
8=Scan Complete, 10=FIFO Half Full, 11=algorithm interrupt

Returns state of Operation Status signals

Bits set to 1 enable status events to be summarized into Status Byte
Returns the decimal weighted sum of bits set in the Enable register
Returns weighted sum of bits that represent Operation status events
Sets mask hits to enable pos. Condeition Reg. transitions to Event reg
Returns positive transition mask value

Sets mask bits to enable neg. Condeition Reg. transitions to Event reg
Returns negative transition mask value

Presets both the Operation and Questionable Enable registersto 0
Questionable Data Status Group: Bit assignments; 8=Calibration Lost,
9=Trigger Too Fast, 10=FIFO Overflowed, 11=Over voltage, 12=VME
Memory Overflow, 13=Setup Changed.

Returns state of Questionable Status signals

Chapter 6

HP E1415 Command Reference

301

Command Quick Reference

SCPI Command Quick Reference

:SOURce?

‘TIMer
[:PERiod] <trig_interval>
[:PERiod]?

Command Description
:ENABIle <enable_mask> Bits set to 1 enable status events to be summarized into Status Byte
:ENABIe? Returns the decimal weighted sum of bits set in the Enable register
[:EVENt]? Returns weighted sum of bits that represent Questionable Data events
:NTRansition <transition_mask> Sets mask hits to enable pos. Condeition Reg. transitions to Event reg
:NTRansition? Returns positive transition mask value
:PTRansition <transition_mask> Sets mask bits to enable neg. Condeition Reg. transitions to Event reg
:PTRansition? Returns negative transition mask value
SYSTem
:CTYPe? (@<channel>) Returns the identification of the SCP at channel
:ERRor? Returns one element of the error queue "0" if no errors
:VERSion? Returns the version of SCPI this instrument complies with
TRIGger
:COUNt <trig_count> Specify the number of trigger events that will be accepted
:COUNLt? Returns the current trigger count setting
[:IMMediate] Triggers instrument when TRIG:SOUR is TIMer or HOLD (same as*TRG

:SOURce BUS|EXT |HOLD |IMM | SCP | TIMer | TTLTrg<n>

and |EEE 488.1 GET commands.

Specify the source of instrument triggers

Returns the current trigger source

Setsthe interval between scan triggers when TRIG:SOUR is TIMer
Sets the interval between scan triggers when TRIG:SOUR is TIMer
Returns setting of trigger timer

302 HP E1415 Command Reference

Chapter 6

Command Quick Reference

| EEE-488.2 Common Command Quick Reference

Macros

Synchronization

*DMC <name>,<cmd_data>
*EMC 1|0

*EMC?

*GMC? <name>

*LMC?

*PMC

*RMC <name>

*OPC

*OPC?

*TRG

*WAI

Category Command Title Description
Calibration *CAL? Calibrate Performsinternal calibration on all 64 channels out to the
terminal module connector. Returns error codes or 0 for OK
Internal Operation | *IDN? Identification Returns the response:
HEWLETT-PACKARD,E1415B,<serial#> ,<driver revi#>
*RST Reset Resets al scan liststo zero length and stops scan triggering.
Status registers and output queue are unchanged.
*TST? Self Test Performs self test. Returns O to indicate test passed.
Status Reporting *CLS Clear Status Clearsall statusevent registersand so their status summary bits
(except the MAYV hit).
*ESE <mask> Event Status Enable Set Standard Event Status Enable register bits mask.
*ESE? Event Status Enable query Return current setting of Standard Event Status Enable register.
*ESR? Event Status Register query Return Standard Event Status Register contents.
*SRE <mask> Service Request Enable Set Service Request Enable register bit mask.
*SRE? Service Request Enable query | Return current setting of the Service Request Enable register.
*STB? Read Status Byte query Return current Status Byte value.

Define Macro Command
Enable Macro Command
Enable Macros query
Get Macro query

Learn Macro query
Purge Macro Commands

Remove Individual Macro

Operation Complete

Operation Complete query

Trigger

Wait to Complete

Assigns one, or a sequence of commands to a macro.
Enable/Disable defined macro commands.

Returns 1 for macros enabled, O for disabled.

Returns command sequence for named macro.
Returns comma-separated list of defined macro names
Purges all macro commands

Removes named macro command.

Standard Event register's Operation Completebit will be1when
all pending device operations have been finished.

Places an ASCII 1in the output queue when all pending
operations have finished.

Trigger s module when TRIG:SOUR isHOLD.

Chapter 6

HP E1415 Command Reference 303

Command Quick Reference

Notes:

304 HP E1415 Command Reference Chapter 6

Appendix A
Specifications

Power Requirements
(with no SCPs installed) +5V

IPm=Peak Module Current IPm IDm ’

+12V -12v +24V -24V -5.2v

Pm IDm ‘ Pm IDm ‘ Pm IDm ’ Pm IDm ‘ Pm IDm

IDm=Dynamic Module Current 1.0 0.02 ‘

0.06 0.1 ‘ 001 001 ‘ 01 001 ‘ 01 001 ‘ 0.15 0.01

Cooling Requirements

Average Watts/Slot APressure (mmH20) Air Flow (liters/s)

14 0.08 0.08

Power Available for SCPs
(See VXI Catalog or SCP
manuals for SCP current)

1.0A £24vV, 3.5A 5V

Measurement ranges

DC Volts (HP E1501 or HP E1502) £62.5mV to +16V Full Scale
Temperature Thermocouples - -200 to +1700 °C

Thermistors - (Opt 15 required) -80 to +160 °C

RTD’s - (Opt 15 required) -200 to +850 °C
Resistance (HP E1505 with HP E1501) 512 ohms to 131 Kohms FS
Strain 25,000 Me or limit of linear range of strain gage

Measurement Resolution

16 bits (including sign)

Maximum Update Rate
(running PIDA algorithms)

1 Algorithm 2.5 KHz
8 Algorithms 1 KHz
32 Algorithms 250 Hz

Trigger Timer and
Sample Timer Accuracy

100ppm (.01%) from -10 °C to +70 °C

External Trigger Input

TTL compatible input. Negative true edge triggered except first trigger will occur if
external trigger input is held low when module is INITiated. Minimum pulse width

100nS. Since each trigger starts a complete scan of 2 or more channel readings,

maximum trigger rate depends on module configuration.

Appendix A

Specifications 305

Maximum input voltage
(Normal mode plus common mode)

With Direct Input, Passive Filter, or Amplifier SCPs:
Operating: < £16 V peak Damage level: >+42 V peak
With HP E1513 Divide by 16 Attenuator SCP:
Operating: <60 VDC, <42 V peak

Maximum common mode
voltage

With Direct Input, Passive Filter, or Amplifier SCPs:
Operating: <*16 V peak Damage level: >*42 V peak
With HP E1513 Divide by 16 Attenuator SCP:
Operating: <60 VDC, <*42 V peak

Common mode rejection

0 to 60Hz -105dB

Input impedance

greater than 90 MOhm differential
(1 M Ohm with HP E1513 Attenuator)

On-board Current Source

122 JA £0.02%, with =17 Volts Compliance

Maximum tare cal. offset

SCP Gain = 1 (Maximum tare offset depends on A/D range and SCP gain)

A/D range 16 4 1 0.25 0.0625
+V F.Scale
Max Offset 3.2213 .82101 .23061 .07581 .03792

The following specifications reflect the performance of the HP E1415 with the HP E1501 Direct Input Signal Conditioning Plug-on. The
performance of the HP E1415 with other SCPs is found in the Specifications section of that SCP’s manual.

Measurement accuracy (90 days) 23°

DC Volts

C #1°C (with *CAL? done after 1 hr warm up and CAL:ZERO? within 5 min.).

NOTE: If autoranging is ON:

for readings <3.8V, add £.02% to linearity specifications.
for readings >3.8V, add +.05% to linearity specifications.

A/D range Linearity Offset Error Noise Noise*
+V F. Scale % of Reading 3 sigma 3 sigma
.0625 0.01% 53UV 18 suv
-215 8-812;" 10.3UV 45V 24V

. (]
4 0.01% 31pv 110UV 90V
16 0.01% 122pv 450UV 366V
488UV 1.8 mv 1.5mVv

Temperature Coefficient: Gain - 10ppm/°C. Offset - (0 - 40°C) .14UV/°C, (40 - 55°C) .8V+.38V/°C

306 Specifications

Appendix A

Temperature Accuracy

The following pages have temperature accuracy graphs that include instrument and
firmware linearization errors. The linearization algorithm used is based on the ITS-90
standard transducer curves. Add your transducer accuracy to determine total
measurement error.

The thermocouple graphs on the following pages include only the errors due to
measuring the voltage output of the thermocouple, as well as the algorithm errors due
to converting the thermocouple voltage to temperature. To this error must be added the
error due to measuring the reference junction temperature with an RTD or a 5K
thermistor. See the graphs for the RTD or the 5K thermistor to determine this additional
error. Also, the errors due to gradients across the isothermal reference must be added.
If an external isothermal reference panel is used, consult the manufacturer’s
specifications. If HP termination blocks are used as the isothermal reference, see the
notes below.

NOTES

1) When using the Terminal Module as the isothermal reference, add +£0.6°C to the
thermocouple accuracy specs to account for temperature gradients across the Terminal
Module. The ambient temperature of the air surrounding the Terminal Module must be
within £2°C of the temperature of the inlet cooling air to the VXI mainframe.

2) When using the HP E1586 Rack-Mount Terminal Panel as the isothermal reference,
add +0.2°C to the thermocouple accuracy specs to account for temperature gradients
across the HP E1586. The HP E1586A should be mounted in the bottom part of the
rack, below and away from other heat sources for best performance.

The temperature specification graphs are found on the following pages:

e Thermocouple Type E (-200-800C), SCPs HP E1501,02,03
e Thermocouple Type E (-200-800C), SCPs HP E1508,09.
e :Thermocouple Type E (0-800C), SCPs HP E1501,02,03
e Thermocouple Type E (0-800C), SCPs HP E1509,09
» Thermocouple Type E Extended, SCPs HP E1501,02,03.......
e Thermocouple Type E Extended, SCPs HP E1508,09
e Thermocouple Type J, SCPs HP E1501,02,03
e Thermocouple Type J, SCPs HP E1508,09.
e Thermocouple Type K, SCPs HP E1501,02,03
e Thermocouple Type R, SCPs HP E1501,02,03.
e Thermocouple Type R, SCPs HP E1508,09
e Thermocouple Type S, SCPs HP E1501,02,03...............
e Thermocouple Type S, SCPs HP E1508,09
e Thermocouple Type T, SCPs HP E1501,02,03...............

e Thermocouple Type T, SCPs HP E1508,09

¢ 5K Thermistor Reference, SCPs HP E1501,02,03............
5K Thermistor Reference, SCPs HP E1508,09.
RTD Reference, SCPs HP E1501,02,03
RTD, SCPs HP E1501,02,03.ot
RTD, SCPsHP E1508,09t
2250 Thermistor, SCPs HP E1501,02,03
2250 Thermistor, SCPs HP E1508,09.
5K Thermistor, SCPs HP E1501,02,03.
5K Thermistor, SCPs HP E1508,09
10K Thermistor, SCPs HP E1501,02,03.
10K Thermistor, SCPs HP E1508,09

Appendix A

Specifications 307

Thermocouple Type E (-200-800C), SCPs HP E1501,02,03

00008 000009 0000y 0000T 000 0000
0 33

o
<
I\

00y

“ 00°¢
,

009

00'L

.

i

008

JH0 191 $9X (€1 1dO) €0STH dH

006

59
=)
@
St
2
=
)
<
-
N
<)
o)
<
a
=
a9
=

430 9L (11 1dO) 10S1d dH

D 8:Q
CELINT

Appendix A

308 Specifications

Thermocouple Type E (-200-800C), SCPs HP E1508,09

0 93

J40 1934 (61 1dO) 60ST1H dH

450 11 (81 1dO) 80518 dH

00008 00009 00°00v

00002

000 00°00¢-

2 ot at sl

AL L

P .

qadAL

000
0S0
00t
0¢'1
00¢
0sc
00t
0s't
00¥
0s'y
00°¢
0s's
009
09
00°L
0S'L
008

0 83

309

Specifications

Appendix A

:Thermocouple Type E (0-800C), SCPs HP E1501,02,03

D 3ag

J40 I $9X (€1 LdO) €0ST14 dH

20 111 (171 1d0) 10519 dH

00°008

00°009 00°00% 00°00¢

000

.:._.:_f:_

\
UL
! rf:c——
|

vt 00°0S

, 00001

- -~ ACTRTTTT \
-~ ld " 4o\ \Y)
™ \lrrs\’.s:— rt*ne:-

reeret??” """

P L A XY

00°051

00°00T

2 v

AT

AAAAN
PAAMAAMAA A £+
)

00052

00°00¢

<> 00°05¢

PIPIPIVITIT hadid
RN

O L LU LL Y L LT PRV,
bt LA PN

00°00v

00°0St

00°008

00°0SS

007009

(|

adA],

00°059

¢-01 XD 3@

Appendix A

310 Specifications

Thermocouple Type E (0-800C), SCPs HP E1509,09

0 33

440 19 (61 LdO) 60519 dH

----------- WsReEsmEEAERSRENSTEEAdEASESEASATOTARAnY

440 N1 (81 LJO) 80S1H dH

00008

00°009

00°00v

00°00¢

000

00°0v

3itAteag

00°0§

0009

00°0L

0008

00°06

LAY
b

-
oat
spt4t %

P

L
REEX Y

00°001

00011

iy

00021

auth

000t

\Kﬁ

00°0v1

"

00°0S1

007091

000L1

00081

00°061

AdA],

00°00¢

¢ 01 XD 3d

311

Specifications

Appendix A

Thermocouple Type E Extended, SCPs HP E1501,02,03

00' 05°0 000
¢01 XD 3oq
000
001

e OON

TEE= === s e m v A FA A

“ - — .I‘ .. Setionae,

AT AP N e
ot

00t

F— 00t

00°¢
009
00°L
00’8

006

0001
00’11
00'Cl
d40 1 $9X (€1 1dO) €051d dH 00°€l

00'v1

.
[ad
S
5
=
8
=
=9
S
N’
(o]
]
w
E
jau
am

d40 1 (11 LdO) 10514 dH 00°51

D8
papua)xy o AdA],

Appendix A

312 Specifications

Thermocouple Type E Extended, SCPs HP E1508,09

¢01¥x23q

d4Q 11 (61 1d0O) 60519 dH

--

440 191 (81 1dO) 80519 dH

001 0s0

000

A AAAAN

papudixy i 3dL],

000
001
00T
00'¢
00t
00°S
009
00'L
008
006
0001
0011
00Z1
00°¢1
0041

0 8aq

313

Specifications

Appendix A

Thermocouple Type J, SCPs HP E1501,02,03

00°008 00°009 00°00% 00'00C 000 00°00T-
D3

000
- 1\!.\)».'\\/

TANCIANCL A A e LB ST e e e s - l..s!tlcsxrsﬁi

ALY PRYY S

SAAAAAAAAAAAAAAAAA

0c0

0yo

Sevain,
ML

.
S I S SRS ST TS RV 09°0

e st o | —

080

00'1

0Tl

EITYTYY NS
-~

— OF'1

o
=~

enmesndasss
cwssccstes

b,

e

091

081

00C

02T
J40 1 ¥9X (€1_1dO) €0STH d

I R e N s S S P SR g gl AR A A o i i

440 1 8X (€1 1d0) €0S19 dH

oy'c

09°C

o
et
S
St
B
=
S)
<
(o]
=]
]
=
ja)
=

oy

...

d40 111 (11 1dO) 10519 dH

D 85

[adAg,

Appendix A

314 Specifications

Thermocouple Type J, SCPs HP E1508,09

00008 00009 0000 00007 000 00°002-
0 83

000
H :.:........... .m ”
4 TR,

ﬁ]
faes-t oro
-.- X H
rant : . fensues .
* ol-)‘tns.:-...——\..ﬁ%-.-:..o.:-..:‘:-.\T sormenene i
v

AAAAAAAAAAAAAAAAAAAA] oN.O
A z

\ 0€0
0v'0
0S°0
09°0
\ 0L0
080
060
00'1
01’1
0T’
0¢'T
ov'l

051
JJQ 1211 (61 LdO) 60S1d dH

...... 091
d40 191 (81 LdO) 80519 dH

ascnane sepavatiae,e

D3
fadi],

315

Specifications

Appendix A

Thermocouple Type K, SCPs HP E1501,02,03

001 05°0 000
c01 XD 33a

_l)a:.{.s\)l:

by
-)‘(\l(?‘?“.'l"l")l ‘,\\f” ’*
AU ' XY VP >:>
] oA —
T (sa;\s?-r;l.;t/::..«x\ s__
YA ~ ~ 1->>>>\.\<<(/>>...“. 1 OW.O
v
A VVYYVYYY f —
()
| .
n!
IO -4--'-.-.o--:..:-o--. ----------- r--....\.o-:.!‘—-...:-.:uo.u.-_.... —
R
I i i 00’1
et s) —
i
§ !
. [
-.. » —
f |
H
H
d

B e

-

=
<
o~

-,

0¢C

00°¢

0S¢
JH0 1 #9X (€1 LdO) £0S1d dH

[E ai iNE = -S| ARG - b g AR P G TN

00y

£
=
o
b
2
=
~~
=
o
el
N
S
=
hal
o
=

dd0 3 (11 1dO) 10514 dH

D 8qa

) ELINS

Appendix A

316 Specifications

Thermocouple Type R, SCPs HP E1501,02,03

00'f 08°0 09°0 0¥°0 0T0 00°0
01 XD 3q

000

i B . T P

¥)‘a$\\(/\ A}

o Sl __ '} 050
lllll [I - -

mreesas LA \

.;..}la,)\(
A 00T
.

Vv .
] i — 05T

00C

</> 0sC

00°€

0s'€
C 00'F

.
Y.

% 0s'y

00°S

4 0¢'¢
210 19 $9X (€1 1d0) €0ST1A dH

009

059
HJ0 I (11 1dO) 10S19 dH 00°'L

D 8q
¥ AdL],

317

Specifications

Appendix A

Thermocouple Type R, SCPs HP E1508,09

c01 XD 320

440 Yoy (61 1d0) 60S19 dH

440 1N (81 LdO) 80S1H dH

00°1 080 090

0ov'0 070

000

P

Lt
[(LT NN

'

.
Al RV AR IR

L Y

D e v
hd TR 1) Xy
* tNIALN A

LA P

o/

>>>>>>>>>>

r>>>\f>>>>4>) I\

t

Seecccenieccnnal

¥ adL],

f'

0T’0

— 0t0
— 0v'0
— 050
— 09°0

0L0
080
060
001
01'1
0Tl
0t'l
oyl
0s'l
091
0Ll
081

D 3

Appendix A

318 Specifications

Thermocouple Type S, SCPs HP E1501,02,03

c01 XD 3a

440 191 $9X (€1 1d0) €0S1HdH

J40 1 8X (€1 1dO) €019 dH

mmO 1L (11 ,EOV 10STH dH

051

001

b = - ———

Mwwun\NAL) Ny

SEmN ALl L

Nt
LIPTNV R A

wpe
aaemarte

—svemacnsn Seraaa,

R P13

roep

eeevhmemsmaposnemnhans

i dercenadoace

SadA],

4

000
0S'0
001
0s'1
007
0sC
00t
0S¢t
00'v
0Sy
00°¢

0SS

009

059
00°L
0S'L
008

0 daq

319

Specifications

Appendix A

Thermocouple Type S, SCPs HP E1508,09

051 001 050 000
¢01 XD 32q

020

| AR A A A AR 1) o
. >‘><><><¢<,<.<§\,<><>_ __> | 09°0
_>—>} “ 5 080
- 001
0Tl
o'l

091
08'1
_|1 00¢C
0T'C
0v'C
09°C
08¢
00°¢

d40 1 (61 1dQ) 60514 dH 0c'e

J40 1 (81 LJO) 80S1H dH ov'e

oLl

SadL],

Appendix A

320 Specifications

Thermocouple Type T, SCPs HP E1501,02,03

00'00¥ 00002 000 00002
03

000
0C'0

L R R RN N YT Y Y Y
l.\rtkflu_)..\a'i\;ll

rlffll(!flta\\ffs i\
-

. — 0v'0
14\; __‘ 1

i-+— 09°0

. </> _..... w { 080

e o

SV

A\l ov1

091
081
00C
0T?
ov'e
09C
087
00t
0Te
ov'e

-

440 L] $9X (€1 1dO) €0STH dH

JJO 1 8X (£1 1dO) €0ST1H dH

J40 191 (21 LdO) T0STH dH

Feeesnsnnsessannsnana B EEEuRBssedssibbnccatosaananrranssenesanatentoaneray

440 9k (11 1dO) 10515 dH

D 33

1 9dAT,

321

Specifications

Appendix A

Thermocouple Type T, SCPs HP E1508,09

0000F 0000E 0000 00001 000 00001~ 0000Z-
D33 000

dtabatan vt 0, 0 o b
¢ ALt L I8 ...-..:.......‘........\ .:-:..o. &L ALt
LY SV

e P RR AN A MM

010

ysae-
P

VW ﬁ “" i 0T0
- 0€°0

0o

< 050

090
0L0
080
060
001
o1l
. 0Tl
0g'1
oVl

-

d40 12N (61 .140) 60518 dH — 051

-- “sssspasssumussssane

440 191 (81 1dO) 80519 dH 09'1
o x-Cle

1, 9dAT,

Appendix A

322 Specifications

5K Thermistor Reference, SCPs HP E1501,02,03

D 3o

440 19 ¥9X (€1 1dO) €014 dH

d40 191 (11 LdO) 10519 dH

0008 00°09 000y

A\

00°0¢

000

n
L\

AHY ULIPYT, NS

Yyvy

LAl

00¢
08'[-
091~
oy'1-
0Tl-
00°1-
08°0-
09°0-
o¥o-
020~
000

0 8aq

323

Specifications

Appendix A

5K Thermistor Reference, SCPs HP E1508,09

D33

S0 191 (61 1dO) 60S19 dH

J40 1911 (81 LdO) 80514 dH

00°08 00°09 00°0v 00°

0t

LA

ARAD

PP

AHY WY, S

00T

081~

09°1-

ov'1-

0C'T-

00°1-

08°0-

09°0-

0o¥'0-

0¢0-

000

0 33

Appendix A

324 Specifications

RTD Reference, SCPs HP E1501,02,03

D 89q

JHO_ 1 $9X (E1.1dO) €0S1H dH

e e em e e pm e me R W e Mm e ww Em mm mm Em e mm wm e mm
DR E L R i e A Sy gy iy i A ymig S Y

d40 1 (11 1dO) 10519 dH

00°0¢

000

00°05-

00001~

r~--

- - ma e .

ot v =y oy e e

P . T

0008

- —-—

P

regm-y=

00001

- -

LR B Rl I e

R k|

00051

00°00¢

00057

00°00¢t

00°0s€

00°00v

00°05¥

00°00S

00°05S

00009

00059

aupse”®

......

eagava

00'00L

A4 ALY

00°05L

01 XD 3q

325

Specifications

Appendix A

RTD, SCPs HP E1501,02,03

01 ¥D 3q

J40 A ¥9X (€1 1d0) €0S1d dH

440 391 8X (€1 1d0) £0ST1d dH

J40 1N (21 1dO) 705149 dH

P R ey T - T T TP savssanamresraenarnan

440 19 (11 .1dO) 10STH dH

001

050

000

mi— 000

00°0$

00001

00°0s1

00°00¢

00°05¢

00°00¢

00°0S¢

00°00¥

00°0sv

00°008

00°0¢¢

ard

¢-01 X033

Appendix A

326 Specifications

RTD, SCPs HP E1508,09

c01 XD 3

JH0O 3 (61 1d0O) 60S19 dH

00°1

080

09°0

Al

0T0

000

0005

00001

00°0S1

00°00¢

0005t

00°00¢

H40 19911 (81 1d0) 80S1H dH

ard

00°05¢

01 XD 3

327

Specifications

Appendix A

2250 Thermistor, SCPs HP E1501,02,03

D 88

. e e am m em em e e mm e me am e e AR s e e e e e e

J40 9 (17 1.d0) 105 1H dH

00°00T1 0008 0009 00°0¥

000¢

000

L

WY, TSTT

ov'e
0t
00T
081~
09'1-
oy'1-
0C'1-
00°1-
08°0-
09°0-
0¥'0-
0C0-

000

D 85

Appendix A

328 Specifications

2250 Thermistor, SCPs HP E1508,09

D 3@

..

ddQ 1ot (61 1d0O) 60S1d dH
Jd0 19 (81 1dO) 80S1H dH

007001

0008

00°09

00°0¥

A\

[

|
|
|

|
|
|
|

< </>.>>>>>>i:

WYY, TSTT

ov'e
0c¢
00T
08'1-
09°1-
oy'1-
oc'l-
00°1-
080
09°0-
ovo-
0C0-

000

D33

329

Specifications

Appendix A

5K Thermistor, SCPs HP E1501,02,03

0008 0009 000 0007 000
D 3@

: 00T

09°1-

ov'1-

oT'l-

00°1-

08°0-

A 09°0-

ov'0-

210 I 19X (€1.1dO) €05 18 dH A 0z0-

..................... 440 11 (21 LdO) Z0STH dH -).>>>D)> v 000

d40 394 (11 1d0) 10S1d dH

D 8o

WYY, YIS

Appendix A

330 Specifications

5K Thermistor, SCPs HP E1508,09

0008 0009 000 0002 000
0 33

A\ 00T

\ 08t~

09'1-

ov'l-

0Tl

00°1-

08°0-

A 09°0-

or'o-

A\ oo
340 19K (61 LdO) 60STH dH < />>>>>>>> - 000

v-—¥ 2 VoA

J40 1911 (81 1dO) 80S1H dH

o)Ll
WLIYT, MS

331

Specifications

Appendix A

10K Thermistor, SCPs HP E1501,02,03

00021
D 32Q

00°001 0008 0009

00°0¥

IR S

d:10 9N ¥9X (€1 1dO) €051 dH

J40 g (11 1dO) 10519 dH

WLRYL, MOT

e
Y Y V¥ Yy

09T
ov'e-
0ce
00C
08'1-
09°1-
ov'l-
0T't-
001~
08°0-
09°0-
o¥'0-
070"

000

0 8@

Appendix A

332 Specifications

10K Thermistor, SCPs HP E1508,09

00'021 00001 0008 0009 00°0% 0007 00'0
D33

09°C

> Ov.Nl

0cCc

e
I

/ 081~
\ / 09°1-
|1
|

0T'1-

00'1-

08°0-
> 09°0-
\ ovo-

<\ , > ON.OI
44O 1914 (61 1dO) 60STH dH < </\ A 000

................................ N W vvvvey

ddO 3914 (81 1.dO) 80STH dH

0 85q

WRYL, MOL

333

Specifications

Appendix A

Notes:

334 Specifications Appendix A

Appendix B
Error Messages

Possible Error Messages:

-108

-109

-160

-211

-212

-213

-221

-222

-224

-240

-253

-281

-282

-310

-410

1000

2001

2003

2007

2008

2009

2016

3000

'Parameter not allowed'.

'Missing parameter’

‘Block dataerror’.

Trigger ignored'.

"Arm ignored'.

‘Init ignored'.

'Settings conflict’.

‘Data out of range'.

‘Illegal parameter value'.
'Hardware error’. Execute * TST?.
"Corrupt media’.

"Cannot create program’.

'Illegal program name’.

'System error’.

'‘Query INTERRUPTED'.

'Out of memory’

'Invalid channel number’.

'Invalid word address.

'‘Bus error’.

'Scan list not initialized'.

"Too many channelsin channel list’.
‘Byte count is not amultiple of two'.

‘Illegal while initiated'. Operation must be performed

Appendix B

Error Messages 335

3004

3005

3006

3007

3008

3012

3015

3019

3020

3021

3026

3027

3028

3030

before INIT or INIT:CONT ON.

'Illegal command. CAL:CONF not sent’. Incorrect
sequence of calibration commands. Send
CAL:CONF:VOLT command before
CAL:VAL:VOLT and send CAL:CONF:RES
command before CAL:VAL:RES

'lllegal command. Send CAL:VAL:RES. The only
command accepted after a CAL:CONF:RESisa
CAL:VAL:RES command.

‘Illegal command. Send CAL:VAL:VOLT'. Theonly
command accepted after a CAL:CONF:VOLT isa
CAL:VAL:VOLT command.

‘Invalid signal conditioning modul€e’. The command
sent to an SCPwasillegal for its type.

"Too few channelsin scan list’. A Scan List must
contain at least two channels.

"Trigger too fast’. Scan list not completed before
another trigger event occurs.

"Channel modifier not permitted here'.

TRIG:TIM interval too small for SAMP:TIM interval
and scan list size'. TRIG: TIM interval must allow for
completion of entire scan list at currently set
SAMP:TIM interval. See TRIG:TIM in Chapter 5, the
Command Reference

‘Input overvoltage'. Calibration relays opened (if

JM 2202 not cut) to protect module inputs, and
Questionable Data Status bit 11 set. Execute *RST to
close relays and/or reset status bit.

'FIFO overflow’. Lets you know that the FIFO buffer
hasfilled and that one or more readings have been lost.
Usually caused by algorithm values stored in FIFO
faster than FIFO was read.

‘Calibration failed'.
‘'Unable to map A24 VX1 memory’.

‘Incorrect range value'. Range value sent is not
supported by instrument.

‘Command not yet implemented!!”.

336 Error Messages

Appendix B

3032

3033

3034

3035

3036

3037

3038

3039

3040

3041

3042

3043

3044

3045

3046

3047

3048

3049

3050

3051

'0Ox1: DSP-Unrecognized command code'.
'0x2: DSP-Parameter out of range'.

'Ox4: DSP-Flash rom erase failure'.

'0x8: DSP-Programming voltage not present’.

'0x10: DSP-Invalid SCP gain value'. Check that SCPis
seated or replace SCP. Channel numbers are in FIFO.

'0x20: DSP-Invalid * CAL? constant or checksum.
*CAL?required.’.

'0x40: DSP-Couldn’t cal some channels. Check that
SCP is seated or replace SCP. Channel numbersarein
FIFO.

'0x80: DSP-Re-Zero of ADC failed'.

'0x100: DSP-Invalid Tare CAL constant or checksunt'.
Perform CAL:TARE - CAL:TARE? procedure.

'0x200: DSP-Invalid Factory CAL constant or
checksum’. Perform A/D Cal procedure.

'0x400: DSP-DAC adjustment went to limit’. Execute
*TST?

'0x800: DSP Status--Do *CAL?.
'0x1000: DSP-Overvoltage on input'.

'0x2000: DSP-cal constant out of range’. Execute
*CAL?

'0x4000: DSP-ADC hardware failure'.
'0x8000: DSP-reserved error condition'’.
‘Calibration or Test in Process.
‘Calibration not in Process.

'’ZERO must be sent before FSCale'. Perform A/D Cal
sequence as shown in Command Reference under
CAL:CONF:VOLT

'Memory size must be multiple of 4'. From
MEM:VME:SIZE. Each HP E1415 reading requires 4
bytes.

Appendix B

Error Messages 337

3052 'Self test failed. Test infoin FIFO'. Use
SENS:DATA:FIFO:ALL?to retrieve datafrom FIFO.

NOTE: *TST? aways sets the FIFO data FORMat to
ASCII,7. Read FIFO datainto string variables.

FIIFO Vaue Definition
1-99 ID number of failed test (see following table for
possible corrective actions)

100 - 163 channel number(s) associated with test (ch 0-63)

164 special "channel" used for A/D tests only

200 A/D range 0.0625V associated with failed test

201 A/D range 0.25V associated with failed test

202 A/D range 1V associated with failed test

203 A/D range 4V associated with failed test

204 A/D range 16V associated with failed test

Test ID Corrective Actions

1-19,21-29 (HP Service)*

20,30-37 Remove all SCPs and seeif * TST? passes. If so,
replace SCPs one at atime until you find the one
causing the problem.

38-71 (HP Service)*
72,74 -76, 80 - 93, | re-seat the SCP that the channel number(s) points

301-354 to, or movethe SCP and seeif thefailure(s) follow
the SCP. If the problems move with the SCP,
replace the SCP.

73,77-79,94-99 | (HP Service)*

*Must send moduleto an HP Service Center for repair.
Record information found in FIFO to assist the HP
Service Center in repairing the problem.

Refer to the Command Reference under *TST? for a
list of module functions tested.

NOTE During thefirst 5 minutes after power is applied, * TST? may fail. Allow
the module to warm-up before executing * TST?

338 Error Messages Appendix B

3053

3056

3057

3058

3067

3068

3069

3070

3071

3074

3075

3076

3077

3078

3079

3080

3081

"Corrupt on board Flash memory'.

"Custom EU not loaded’. May have erased custom

EU conversion table with *RST. May have linked
channel with standard EU after loading custom EU, this
erases the custom EU for this channel. Reload custom
EU table using DIAG:CUST:LIN or
DIAG:CUST:PIEC.

'Invalid ARM or TRIG sourcewhen S/H SCP's enabled’
Don't set TRIG:SOUR or ARM:SOUR to SCP with
HP E1510 or HP E1511 installed.

'Hardware does not have D32, S/H, or new trigger
capabilities. Module’s serial number is earlier than
3313A00530.

‘Multiple attempts to erase Flash Memory failed’
‘Multiple attempts to program Flash Memory failed’
"Programming voltage jumper not set properly’. See
Disabling Flash Memory Accessin Chapter 1
(IM2201)

‘Identification of Flash ROM incorrect’

"Checksum error on Flash Memory’

'WARNING! Old Opt 16 or Opt 17 card can damage
SCP modules' must use HP E1506 or HP E1507.

"Too many entriesin CVT list’
‘Invalid entry in CVT list’ Can only be 10 to 511

"Too many updates in queue. Must send UPDATE
command’ To allow more updates per ALG:UPD,
increase ALG:UPD:WINDOW

‘Invalid Algorithm name’ Can only be ’ALG1’ through
'ALG32, or 'GLOBALS, or ' MAIN’

'Algorithm isundefined’ In ALG:SCAL, ALG:SCAL?,
ALG:ARR, or ALG:ARR?

'Algorithm already defined’ Tryingto repeat ALG:DEF
with same <alg_name> (and is not enabled to swap), or
trying to define’'GLOBALS again since last *RST

'Variableis undefined’ Algorithm exists but has no
local variable by that name.

Appendix B

Error Messages 339

3082

3083

3084

3084

'Invalid Variable name’ Must bevalid 'C’ identifier, see
Chapter 5

'Global symbol (variable or custom function) already
defined’ Trying to define aglobal variable with same
name as a user defined function, or vice versa. User
functions are also global.

'Algorithmic error queue full’ ALG:DEF has generated
too many errors from your algorithm source code

"Error 1:Number too big for a 32 bit float"

"Error 2:Number too big for a 32 bit integer"

"Error 3:'8' or '9" not alowed in an octal number"

"Error 4.Syntax error"

"Error 5:Expecting ("

"Error 6:Expecting)"

"Error 7:Expecting an expression”

"Error 8:0ut of driver memory"

"Error 9:Expecting a bit number (Bn or Bnn)"

"Error 10:Expecting 1™

"Error 11:Expecting an identifier"

"Error 12:Arrays can't beinitialized"

"Error 13:Expecting 'static™

"Error 14:Expecting 'float™

"Error 15:Expecting ;"

"Error 16:Expecting ’,™

"Error 17:Expecting '="

"Error 18:Expecting {™

"Error 19:Expecting '}

"Error 20:Expecting a statement"

"Error 21:Expecting 'if"

"Error 22:Can't write to input channels’

"Error 23:Expecting a constant expression”

"Error 24:Expecting an integer constant expression”

"Error 25:Reference to an undefined variable"

"Error 26:Array name used in ascalar context”

"Error 27:Scalar name used in an array context"

"Error 28:Variable name used in a custom function
context"

"Error 29:Reference to an undefined custom function”

"Error 30:Can't have executable codein GLOBALS
definition"

"Error 31:CVT addressrange is 10 - 511"

"Error 32:Numbered algorithms can only be called
from MAIN"

"Error 33:Reference to an undefined algorithm”

"Error 34:Attempt to redefine an existing symbol
(var or fn)"

"Error 35:Array sizeis1- 1024"

340 Error Messages

Appendix B

3085

3086

3088

3089

3090

3091

3092

3093

3094

3095

3096

3097

3099

3100

"Error 36:Expecting a default PID parameter”

"Error 37:Too many FIFO or CVT writes per scan
trigger"

"Error 38:Statement is too complex”

"Error 39:Unterminated comment"

'Algorithm too big' Algorithm exceeded 46K words
(23K if enabled to swap), or exceeded size specified in
<swap_size>.

‘Not enough memory to compile Algorithm’ Y our
algorithm’s constructs are using too much translator
memory. Need more memory in your HP E1406. Try
breaking your algorithm into smaller algorithms.

"Too many functions Limit is 32 user defined functions

'‘Bad Algorithm array index’ Must be from 0 to
(declared size)-1

'Algorithm Compiler Internal Error’ Call HP with
details of operation.

Illegal while not initiated’ Send INIT before this
command

'No updates in queue

Illegal Variable Type' Sent ALG:SCAL with identifier
of array, ALG:ARR with scalar identifier,
ALG:UPD:CHAN with identifier that is not achannel,
etc.

‘Invalid Array Size Must be 1 to 1024

‘Invalid Algorithm Number’ Must be ’ALG1’ to
'ALG32'

'Algorithm Block must contain termination * Must
append anull byteto end of algorithm string within the
Block Data

‘'Unknown SCP. Not Tested’ May receiveif you are
using a breadboard SCP

'Invalid SCP for this product’

'’Analog Scan time to big. Too much settling time’
Count of channels referenced by algorithms combined
with use of SENS:CHAN:SETTLING hasattempted to
build an analog Scan List greater than 64 channels.

Appendix B

Error Messages 341

3101

3102

3103

3104

'Can't define new algorithm while running’ Execute
ABORT, then define algorithm

'Need ALG:UPD before redefining this algorithm
again’ Already have an algorithm swap pending for this
algorithm.

'Algorithm swapping aready enabled; Can't change
size Only send <swap_size> parameter on initial
definition.

'‘GLOBALS can't be enabled for swapping’ Don't send
<swap_size> parameter for ALG:DEF 'GLOBALS

342 Error Messages

Appendix B

Appendix C
Glossary

The following terms have special meaning when related to the HP E1415.

Algorithm

Algorithm Language

Application Program

Buffer

In general, an algorithm is atightly defined
procedure that performsatask. Thismanual, uses
the term to indicate a program executed within
the HP E1415 that implements a data acquisition
and control algorithm.

The algorithm programming language specific to
the HP E1415. This programming language is a
subset of the ANSI 'C’ language.

The program that runsin the V X1bus controller,
either embedded within the V XIbus mainframe,
or external and interfaced to the mainframe. The
application program typically sends SCPI
commands to configure the HP E1415, define its
algorithms, then start the algorithms running.
Typically, once the HP E1415 is running
algorithms, the application need only "oversee’
the control application by monitoring the
algorithms' status. During agorithm writing,
debugging, and tuning, the application program
can retrieve comprehensive data from running
algorithms.

In thismanual, abuffer isan areain RAM
memory that is allocated to temporarily hold:

Data input values that an algorithm will later
access. Thisisthe Input Channel Buffer.

Data output values from an algorithm until these
values are sent to hardware output channels. This
is the Output Channel Buffer.

Data output values from an algorithm until these
valuesareread by your application program. This
isthe First-In-First-Out or FIFO buffer.

A second copy of an array variable containing
updated valuesuntil itis"activated" by an update.
Thisis"double buffering”.

A second version of arunning algorithmuntil itis

Appendix C

Glossary 343

Control Processor

DSP
EU

EU Conversion

FIFO

Flash or Flash Memory

Scan List

Swapping

"activated" by an update. Thisisonly for
algorithmsthat are enabled for swapping. Thisis
also "double buffering”.

The Digital Signal Processor (DSP) chip that
performsall of the HP E1415'sinternal hardware
control functions as well as performing the EU
Conversion process.

Same as Control Processor
Engineering Units

Engineering Unit Conversion: Converting binary
A/D readings (in units of A/D counts) into
engineering units of voltage, resistance,
temperature, strain. These are the "built in"
conversions (see SENS:FUNC.: ...). The

HP E1415 also provides access to custom EU
conversions (see SENS:FUNC:CUST in
command reference and " Creating and L oading
Custom EU Tables' in Chapter 3).

The First-In-First-OUT buffer that provides
output buffering for data sent from an algorithm
to an application program.

Non-volatile semiconductor memory used by the
HP E1415 to store its control firmware and
cdlibration constants

A list of up to 64 channelsthat is built by the
HP E1415. Channelsreferenced in algorithmsare
placed inthe Scan List asthealgorithmisdefined.
Thislist will be scanned each time the moduleis
triggered.

Signal Conditioning Plug-on: Small circuit
boardsthat plug ontothe HP E1415'smaincircuit
board. Available analog input SCPs can provide
noise canceling filters, signal amplifiers, signal
attenuators, and strain bridge completion. Analog
output SCPs are available to provide
measurement excitation current, controlling
voltage, and controlling current. Digital SCPsare
availableto both read and writedigital states, read
frequency and counts, and output modulated
pulse signas (FM and PWM).

Thisterm appliesto algorithmsthat areenabled to
swap. These algorithms can be exchanged with

344 Glossary

Appendix C

Terminal Blocks

Terminal Module

Update

Update Queue

User Function

another of the same name while the original is
running. The "new" algorithm becomes active
after an update command is sent. This"new"
algorithm may again be swapped with another,
and so on. This capability allows changing
algorithm operation without stopping and leaving
this and perhaps other processes without control.

The screw-terminal blocks you connect your
system field wiring to. The terminal blocks are
inside the Terminal Module

The plastic encased module which contains the
terminal blocks you connect your field wiring to.
The Terminal Module then is plugged into the
HP E1415's front panel.

Thisisan intended change to an algorithm,
algorithm variable, or global variable that is
initiated by one of the commands
ALG:SCALAR, ALG:ARRAY, ALG:DEFINE,
ALG:SCAN:RATIO, or ALG:STATE. This
change or "update" is considered to be pending
until an update command is received. Several
updates can be sent to the Update Queue, waiting
for an update command to cause them to take
effect synchronously. The update commands are
ALG:UPDATE, and ALG:UPD:CHANNEL.

A list of scalar variable values, and/or buffer
pointer values (for arrays, and swapping
algorithms) that is built in response to updates
(see Update). When an update command is sent,
scalar values and pointer values are sent to their
working locations.

A function callablefrom the Algorithm Language
in the general form <function_name>(
<expression>). These user defined functions
provide advanced mathematical capability to the
Algorithm Language

Appendix C

Glossary 345

Notes:

346 Glossary Appendix C

Appendix D
PID Algorithm Listings

The following source listings show the actual code for the HP E1415's
default PID algorithms; PIDA, and PIDB. PIDC is an advanced PID
agorithm that is not "built into" the HP E1415A's driver like the other two,
but isincluded here so you can down-load it using the AL G:DEF command.

Contents

e PIDALIStING.o
e PIDBLiStiNg oo
e PIDC LisStingot

PIDA Listing

/**/

/* 1/0O Channel s */
/* Must be defined by the user */
/* */
/* inchan - |nput channel name */
/* outchan - Qutput channel nane */
/* */
/**/
/* */
/**/
/* PID algorithmfor E1415A controller nodule. This algorithmis called */
/* once per scan trigger by main(). It perforns Proportional, |ntegral */
/* and Derivative control. */
I * */
/* */
/* The output is derived fromthe follow ng equations: */
/* */
/[* PID out = P out + | _out + D out */
/[* P out = Error * P factor */
/* 1 _out =1 _out + (Error * | _factor) */
/* Dout = ((Error - Error_old) * D factor) */
/* Error = Setpoint - PV */
/* */
/* where: */
/* Setpoint is the desired value of the process variable (user supplied) */
/* PV is the process variabl e neasured on the input channel */
/* PID out is the algorithmresult sent to the output channel */
/* P factor, | _factor, and D factor are the PID constants */
/[* (user supplied) */
/* */
/* */
/* At startup, the output will abruptly change to P_factor * Error. */
/* */
/* */
/**/
/* */
/* User determnmined control paranmeters */

Appendix D PID Algorithm Listings 347

static float Setpoint = 0; /* The setpoint */
static float P_factor = 1; /* Proportional control */
static float | _factor = 0; /* Integral control constant */
static float D factor = 0; /* Derivative control constant */
/* */
/* Other Variables */
static float | _out; /* Integral term */
static float Error; /* Error term */
static float Error_old; /* Last Error - for derivative */
/* */
/*PI D al gorithm code: */
/* Begin PID cal cul ations */
/* First, find the Process Variable "error" */
/* This calculation has gain of mnus one (-1) */
Error = Setpoint - inchan;
/* On the first trigger after INIT, initialize the |l and D terns */
if (First_loop)
/* Zero the | termand start integrating */
| out = Error * | _factor;
/* Zero the derivative term?*/
Error_old = Error;
/* On subsequent triggers, continue integrating */
else /* not First trigger */
{
| _out = Error * | _factor + | _out;
/* Sum PID terns */
outchan = Error * P_factor + |1 _out + D factor * (Error - Error_old);
/* Save values for next pass */
Error_old = Error;
348 PID Algorithm Listings Appendix D

PIDB Listing

/**/

/* PIDB */
/**/
/* 1/0O Channel s */
/* Must be defined by the user */
/* */
/* inchan - |nput channel name */
/* outchan - CQutput channel nane */
/* alarnchan - Al arm channel nane */

* *
;**;

* *
;**;
/* PID algorithmfor E1415A controller nodule. This algorithmis called */
/* once per scan trigger by main(). It perforns Proportional, |ntegral */
/* and Derivative control. */
/* */
/* */
/* The output is derived fromthe follow ng equations: */
/* */
/* PIDout = P out + 1 _out + D out + SD out */
[* P out = Error * P factor */
/* | _out =1_out + (Error * | _factor) */
/* Dout = ((PV.old - PV) * D factor) */
/* SD out = (Setpoint - Setpoint_old) * SD factor */
/* Error = Setpoint - PV */
/* */
/* where: */
/* Setpoint is the desired value of the process variable (user supplied) */
/* PV is the process variabl e neasured on the input channel */
/* PID out is the algorithmresult sent to the output channel */
/* P factor, | _factor, D factor, and SD factor are the PID constants */
/* (user supplied) */
/* */
/* Alarms may be generated when either the Process Variable or the */
/* error exceeds user supplied linits. The alarmcondition will cause */
/[* an interrupt to the host conputer, set the (user-specified) alarm */
/* channel output to one (1), and set a bit in the Status variable to */
/* one (1). The interrupt is edge-sensitive. (It will be asserted only */
/* on the transition into the alarmstate.) The alarm channel digital */
/[* output will persist for the duration of all alarmconditions. The */
/* Status word bits will also persist for the alarmduration. No user */
/* intervention is required to clear the alarmoutputs. */
I * */
/* This version provides for limting (or clipping) of the Integral, */
/* Derivative, Setpoint Derivative, and output to user specified limts. */
/* The Status Variabl e indicates when terns are being clipped. */
/* */
/* Manual control is activated when the user sets the Man_state variable */
/* to a non-zero value. The output will be held at its last value. The */
/* user can change the output by changing the Man_out variable. User */
/* initiated changes in Man_out will cause the output to slewto the */
/* Man_out value at a rate of Man_inc per scan trigger. */
/* */
/* Manual control causes the Setpoint to continually change to match */
/* the Process Variable, and the Integral termto be constantly updated */
/* to the output value such that a return to automatic control wll */

Appendix D PID Algorithm Listings 349

/* be bunpless and will use the current Process Variable value as the */

/* new set poi nt. */
/* The Status variabl e indicates when the Manual control node is active. */
/* */
/* At startup in the Manual control node, the output will slew to Man_out */
/* at a rate of Man_inc per scan trigger. */
/* */
/* At startup, in the Automatic control nmode, the output will abruptly */
/* change to P_factor * Error. */
/* */
/* For process nmonitoring, data may be sent to the FIFO and current */
/* value table (CVT). There are two levels of data |ogging, controlled */
/* by the H story _node variable. The location in the CVT is based */
/* on 'n", where nis the algorithm nunber (as returned by ALG NUM for */
/* exanple). The first value is placed in the (10 * n)th 32-bit word of */
/* the CVT. The other values are witten in subsequent |ocations. */
I * */
/* Hstory nmode = 0: Sunmary to CVT only. In this node, four val ues */
/* are output to the CVT. */
/* */
/* Locati on Val ue */
/* 0 I nput */
/* 1 Error */
/* 2 CQut put */
/* 3 St at us */
/* */
/[* Hstory node = 1: Sunmary to CVT and FIFO. In this node, the four */
/* sunmmary val ues are witten to both the CVT and FIFO. A header */
/* tag (256 * n + 4) is sent to the FIFOfirst, where nis the Al gorithm*/
/* nunber (1 - 32). */
/* */
/**/
/* */
/* User determnmined control parameters */
static float Setpoint = 0; /* The setpoint */
static float P_factor = 1; /* Proportional control constant */
static float | _factor = O; /* Integral control constant */
static float D factor = 0; /* Derivative control constant */
static float Error_max = 9. 9e+37; /* Error alarmlinits */
static float Error_nin = -9.9e+37;
static float PV_max = 9. 9e+37; /* Process Variable alarmlimts */
static float PV.mn = -9.9e+37;
static float Qut_max = 9. 9e+37; /* Qutput clip limts */
static float Qut_mn = -9.9e+37;
static float D nmax = 9. 9e+37; /* Derivative clip limts */
static float D mn = 9.9e+37;
static float | _max = 9. 9e+37; /* Integral cliplimts */
static float I _mn = -9.9e+37;
static float Man_state = O; /* Activates manual control */
static float Man_out = O; /* Target Manual output val ue */
static float Man_inc = 9. 9e+37; /* Manual outout change increnent */
static float SD factor = O; /* Setpoint Derivative constant */
static float SD max = 9. 9e+37; /* Setpoint Derivative clip linmts */
static float SD mn = 9.9e+37;
static float Hi story node = O; /* Activates fifo data | ogging */
/* */
/* Oher Variables */
static float |_out; /* Integral term */
static float D out; /* Derivative term */

350 PID Algorithm Listings Appendix D

static float Error; [* Error term */

static float PV_old; /* Last process variable */

static float Setpoint_old; /* Last setpoint - for derivative */

static float SD out; /* Setpoint derivative term */

static float Status = 0; /* Al gorithmstatus word */

/* */

/* BO - PIDout at clip limt */

/* Bl - |_out at cliplimt */

/* B2 - Dout at clip limt */

/* B3 - SDout at clip lint */

/* B4 - in Manual control node */

/* B5 - Error out of lints */

/* B6 - PV out of limts */

/* others - unused */

/* */

/* */

/*PI D al gorithm code: */
/* Test for Process Variable out of limts */

if ((inchan > PV.max) || (PV.min > inchan)) /* PV alarmtest */

if (!'Status.B6)

{
Status.B6 = 1;
al arnchan = 1;
interrupt();
}
el se

{
Status.B6 = O;
}
/* Do this when in the Manual control npbde */
if (Man_state)
{

/* Sl ew out put towards Man_out */
if (Man_out > outchan + abs(Man_inc))

{

out chan

}

else if (outchan > Man_out + abs(Man_inc))

{

outchan = outchan - abs(Man_inc);

}

el se

out chan + abs(Man_i nc);

outchan = Man_out;

/* Set manual node bit in status word */
Status. B4 = 1;
/* No error alarms while in Manual node */
Status.B5 = 0;
/* In case we exit manual node on the next trigger */
/* Set up for bunpless transfer */
| _out = outchan;

Set poi nt = i nchan;
PV ol d = inchan;
Set poi nt _old = inchan;

/* Do PID cal cul ati ons when not in Manual node */

Appendix D PID Algorithm Listings 351

else /* if (Man_state) */

Status. B4 = 0;
/* First, find the Process Variable "error" */
/* This calculation has gain of mnus one (-1) */
Error = Setpoint - inchan;
/* Test for error out of limts */
if ((Error > Error_max) || (Error_mn > Error))

{
if (!'Status.B5)

{
Status.B5 = 1;
al arnthan = 1;
interrupt();

}

}

el se

{
Status.B5 = O;

}
/* On the first trigger after INIT, initialize the | and Dterns */
if (First_loop)

/* Zero the | termand start integrating */
| _out = Error * | _factor;
/* Zero the derivative terns */
PV_old = inchan;
Set poi nt _old = Set point;
}
/* On subsequent triggers, continue integrating */
else /* not First trigger */

{

| out = Error * | _factor + | _out;

/* dip the Integral termto specified linmts */

if (1_out > | _max)
| _out = | _nmax;
St at us. B1=1;
elseif (I_mn > 1| _out)
| _out = 1_mn;
St at us. B1=1,;
}
el se

{
Status. Bl = 0;

/* Calculate the Setpoint Derivative term*/
SD out = SD factor * (Setpoint - Setpoint_old);
/[* dip to specified limts */

if (SDout > SD nmax) /* Clip Setpoint derivative */
{

SD out = SD nax;

St at us. B3=1;

}
else if (SDnmn > SDout)
{

352 PID Algorithm Listings Appendix D

SD out = SD min;
St at us. B3=1;
}

el se
{
Status. B3 = 0O;

/* Calculate the Error Derivative term?*/
D out = D factor *(PV_old - inchan);
/[* Cip to specified limts */
if (D_out > Dmax) [/* dip derivative */

D out = D _nmax;
St at us. B2=1;

elseif (Dnmn > Dout)

D out = D min;
St at us. B2=1,;
}

el se
{
Status. B2 = 0O;

}
/* Sum PID&SD terns */
outchan = Error * P _factor + | _out + D out + SD out;
/* Save values for next pass */
PV_old = inchan;
Set poi nt _old = Set point;
/* In case we switch to manual on the next pass */
/* prepare to hold output at |atest value */
Man_out = out chan;
} /*if (Man_state) */
/[* Cip output to specified limts */
if (outchan > Qut_nax)

{
outchan = Qut _nax;
St at us. BO=1,;
else if (Qut_mn > outchan)
{
outchan = Qut_m n;
St at us. BO=1;
}
el se

{
Status. B0 = 0;

/* Clear alarmoutput if no alarns */

if (!(Status.B6 || Status.B5)) alarnchan = O;
/* Log appropriate data */

if (History_node)

{
/* Qutput summary to FIFO & CVT */
writefifo((ALG_NUMF256)+4);
writeboth(inchan, (ALG NUMF10)+0);
writeboth(Error, (ALG_NUMF10)+1);
writebot h(outchan, (ALG _NUMr10)+2);
writeboth(Status, (ALG NUM10)+3);

Appendix D PID Algorithm Listings 353

}

el se

{
/* Qutput summary to CVT only */
writecvt(inchan, (ALG_NUW10)+0);
witecvt(Error, (ALG NUW10)+1);
writecvt(outchan, (ALG NUM10)+2);
writecvt(Status, (ALG NUMF10)+3);

}

354 PID Algorithm Listings Appendix D

PIDC Listing

/**/

/* PIDC */
/**/
/* 1/0O Channel s */
/* Must be defined by the user */
/* */
/* inchan - |nput channel name */
/* outchan - CQutput channel nane */
/* alarnchan - Al arm channel nane */

* *
;**;

* *
;**;
/* PID algorithmfor E1415A controller nodule. This algorithmis called */
/* once per scan trigger by main(). It perforns Proportional, |ntegral */
/* and Derivative control. */
/* */
/* */
/* The output is derived fromthe follow ng equations: */
/* */
/* PIDout = P out + 1 _out + D out + SD out */
[* P out = Error * P factor */
/* | _out =1_out + (Error * | _factor) */
/* Dout = ((PV.old - PV) * D factor) */
/* SD out = (Setpoint - Setpoint_old) * SD factor */
/* Error = Setpoint - PV */
/* */
/* where: */
/* Setpoint is the desired value of the process variable (user supplied) */
/* PV is the process variabl e neasured on the input channel */
/* PID out is the algorithmresult sent to the output channel */
/* P factor, | _factor, D factor, and SD factor are the PID constants */
/* (user supplied) */
/* */
/* Alarms may be generated when either the Process Variable or the */
/* error exceeds user supplied linits. The alarmcondition will cause */
/[* an interrupt to the host conputer, set the (user-specified) alarm */
/* channel output to one (1), and set a bit in the Status variable to */
/* one (1). The interrupt is edge-sensitive. (It will be asserted only */
/* on the transition into the alarmstate.) The alarm channel digital */
/[* output will persist for the duration of all alarmconditions. The */
/* Status word bits will also persist for the alarmduration. No user */
/* intervention is required to clear the alarmoutputs. */
I * */
/* This version provides for limting (or clipping) of the Integral, */
/* Derivative, Setpoint Derivative, and output to user specified limts. */
/* The Status Variabl e indicates when terns are being clipped. */
/* */
/* Manual control is activated when the user sets the Man_state variable */
/* to a non-zero value. The output will be held at its last value. The */
/* user can change the output by changing the Man_out variable. User */
/* initiated changes in Man_out will cause the output to slewto the */
/* Man_out value at a rate of Man_inc per scan trigger. */
/* */
/* Manual control causes the Setpoint to continually change to match */
/* the Process Variable, and the Integral termto be constantly updated */
/* to the output value such that a return to automatic control wll */

Appendix D PID Algorithm Listings 355

/* be bunpless and will use the current Process Variable value as the */

/* new set poi nt. */
/* The Status variabl e indicates when the Manual control node is active. */
/* */
/* At startup in the Manual control node, the output will be held at */
/* its current val ue. * |
/* */
/* At startup, in the Automatic control node, the output will slew */
[* fromits initial value towards P _factor * Error at a rate determ ned */
/* by the Integral control constant (I _out is initialized to cancel P_out). */
/* */
/* For process nmonitoring, data may be sent to the FIFO and current */
/* value table (CVT). There are three |evels of data |ogging, controlled */
/* by the Hi story _node variable. The location in the CVT is based */
/* on 'n", where nis the algorithm nunber (as returned by ALG NUM for */
/* exanple). The first value is placed in the (10 * n)th 32-bit word of */
/* the CVT. The other values are witten in subsequent |ocations. */
/* */
/* Hstory nmbde = 0: Sunmary to CVT only. |In this node, four val ues */
/* are output to the CVT. */
/* */
/* Locati on Val ue */
/* 0 I nput */
/* 1 Error */
/* 2 Qut put */
/* 3 St at us */
/* */
/* Hstory nmbode = 1: Sunmary to CVT and FIFO. In this node, the four */
/* summary values are witten to both the CVT and FIFO A header */
/* tag (256 * n + 4) is sent to the FIFO first. */
/* */
/* Hstory node = 2: Al to FIFO and CVT. |In this node, nine val ues */
/* are output to both the CVT and FIFO A header tag (256 * n + 9) */
/* is sent to the FIFO first. */
/* */
/* Location Val ue */
/* 0 I nput */
/* 1 Error */
/* 2 Qut put */
/* 3 St at us */
/* 4 Set poi nt */
/* 5 Proportional term */
/* 6 Integral term */
/* 7 Derivative term */
/* 8 Set poi nt Derivative term */
/* */
/**/
/* */
/* User determ ned control paraneters */
static float Setpoint = 0; /* The setpoint */
static float P_factor = 1; /* Proportional control constant */
static float | _factor = 0; /* Integral control constant */
static float D factor = 0; /* Derivative control constant */
static float Error_max = 9.9e+37; /* Error alarmlinits */
static float Error_min = -9.9e+37;
static float PV_max = 9. 9e+37; /* Process Variable alarmlinmts */
static float PV.mn = -9.9e+37;
static float Qut_max = 9. 9e+37; /* Qutput clip limts */
static float Qut_mn = -9.9e+37;

356 PID Algorithm Listings Appendix D

static float D nmax = 9. 9e+37; /* Derivative clip limts */
static float D mn = 9.9e+37;
static float |_nmax = 9. 9e+37; /* Integral cliplints */
static float | _mn = -9.9e+37;
static float Man_state = O; /* Activates manual control */
static float Man_out = O; /* Target Manual output val ue */
static float Man_inc = O; /* Manual outout change increnment */
static float SD factor = O; /* Setpoint Derivative constant */
static float SD nmax 9. 9e+37; /* Setpoint Derivative clip limts */
static float SD nmin 9. 9e+37;
static float Hi story node = O; /* Activates fifo data | ogging */
/* */
/* Other Variables */
static float | _out; /* Integral term */
static float P_out; /* Proportional term */
static float D out; /* Derivative term */
static float Error; /* Error term */
static float PV_old; /* Last process variable */
static float Setpoint_old; /* Last setpoint - for derivative */
static float SD out; /* Setpoint derivative term */
static float Status 0; /* Algorithm status word */
/* */
/* BO - PIDout at clip limt */
/* Bl - |_out at clip limt */
/* B2 - Dout at clip limt */
/* B3 - SDout at clip limt */
/* B4 - in Manual control node */
/* B5 - Error out of limts */
/* B6 - PV out of limts */
/* others - unused */
/* */
/* */
/*PI D al gorithm code: */
/* Test for Process Variable out of limts */
if ((inchan > PV_max) || (PV_mn > inchan)) /* PV alarmtest */
if (!'Status.B6)
Status.B6 = 1;
al arnchan = 1;
interrupt();
}
}
el se
{
Status.B6 = O;
}
/* Do this when in the Manual control node */
if (Man_state)
/* On the first trigger after INNT only */
if (First_loop)
{
Man_out = out chan;/* Mai ntain output at manual snooth start */
}
/* On subsequent triggers, slew output towards Man_out */
else if (Man_out > outchan + abs(Man_inc))
{
out chan = outchan + abs(Man_inc);
Appendix D PID Algorithm Listings 357

else if (outchan > Man_out + abs(Man_inc))

{

out chan

}

el se

{

out chan

out chan - abs(Man_i nc);

Man_out;

/* Set manual node bit in status word */
Status.B4 = 1,
/* No error alarms while in Manual node */
Status.B5 = 0O;
/* In case we exit manual node on the next trigger */
/* Set up for bunpless transfer */
| _out = outchan;

Set poi nt = i nchan;
PV ol d = inchan;
Set poi nt _old = inchan;

/* Do PID cal cul ati ons when not in Manual node */
else /* if (Man_state) */

Status.B4 = 0;
/* First, find the Process Variable "error" */
/* This calculation has gain of mnus one (-1) */
Error = Setpoint - inchan;
/* Test for error out of linmts */
if ((Error > FError_max) || (Error_mn > Error))

{
if (!'Status.B5)

{
Status.B5 = 1;
al arnthan = 1;
interrupt();

}

el se

{
Status.B5 = 0;

}
/[* On the first trigger after INIT, initialize the |l and Dterns */
if (First_loop)
{
/* For no abrupt output change at startup nmake the | termcancel the P term™*/
| _out = outchan + Error * (|_factor - P_factor);
/* Zero the derivative ternms */
PV_ol d = inchan;
Set poi nt _old = Set point;

/* On subsequent triggers, continue integrating */
else /* not First trigger */

{

| out = Error * | _factor + | _out;

/* dip the Integral termto specified lints */
if (1_out > | _max)
{

| _out = | _nmax;

358 PID Algorithm Listings Appendix D

St at us. B1=1;

elseif (I_mn > 1| _out)
{ .
I _out = 1_mn;
St at us. B1=1;
}
el se

{
Status.Bl1 = 0;

/* Calculate the Setpoint Derivative term™*/
SD out = SD factor * (Setpoint - Setpoint_old);
[* AAip to specified limts */
if (SDout > SDnax)/* Cip Setpoint derivative */

{
SD out = SD nax;

St at us. B3=1;

}

elseif (SDmn > SD out)
{

SD out = SD nmin;

St at us. B3=1;

}

el se

{
Status.B3 = 0;

/* Calculate the Error Derivative term?*/
D out = D factor *(PV_old - inchan);
/[* dip to specified limts */
if (D_out > Dnmax)/* dip derivative */

{
D out = D _nax;
St at us. B2=1;

else if (Dmn > Dout)

D out = D mn;
St at us. B2=1;
}

el se
{
Status.B2 = 0;

/* Cal culate Proportional term?*/
P out = Error * P_factor;
/* Sum PID&SD terns */
outchan = P_out + | _out + D out + SD out;
/* Save values for next pass */
PV_old = inchan;
Set poi nt _old = Set point;
/* In case we switch to nmanual on the next pass */
/* prepare to hold output at |atest value */
Man_out = out chan;
} /* if (Man_state) */
/[* dip output to specified limts */
if (outchan > Qut_nax)

{

Appendix D PID Algorithm Listings 359

outchan = Qut _nax;
St at us. BO=1;

else if (Qut_mn > outchan)

out chan = Qut _nmin;
St at us. BO=1;
}

el se
{
Status. B0 = 0O;

/[* Clear alarmoutput if no alarns */

if (!(Status.B6 || Status.B5)) alarnchan = 0;
/* Log appropriate data */

if (Hstory node > 1)

{
/* Qutput everything to FIFO & CVT */
witefifo((ALG_NUMW256)+9);
writeboth(inchan, (ALG NUM10)+0);
writeboth(Error, (ALG _NUM10)+1);
writeboth(outchan, (ALG NUM10)+2);
writeboth(Status, (ALG NUWF10)+3);
writeboth(Setpoint, (ALG NUW10)+4);
writeboth(P_out, (ALG NUMF10)+5);
witeboth(| _out, (ALG NUMF10)+6);
writeboth(D out, (ALG NUM10)+7);
writeboth(SD out, (ALG NUMF10)+8);

else if (Hi story_nopde)

{
/[* Qutput summary to FIFO & CVT */
witefifo((ALG_NUM 256)+4);
writeboth(inchan, (ALG NUM10)+0);
writeboth(Error, (ALG_NUMF10)+1);
writebot h(outchan, (ALG _NUM10)+2);
writeboth(Status, (ALG NUMF10)+3);

}

el se

{
/[* Qutput sunmary to CVT only */
writecvt(inchan, (ALG_NUMF10)+0);
writecvt(Error, (ALG NUM10)+1);
writecvt(outchan, (ALG NUM 10)+2);
witecvt(Status, (ALG NUMF10)+3);

}

360 PID Algorithm Listings Appendix D

Appendix E

Wiring and Noise Reduction Methods

Separating Digital and Analog SCP Signals

Analog Input and
Output

Digital Input and
Output

]

Signals with very fast rise time can cause interference with nearby signal
paths. Thisis called cross-talk. Digital signals present this fast rise-time
situation. Digital 1/O signal lines that are very close to analog input signal
lines can inject noise into them.

To minimize cross-talk you can maximizethe distance between anal og input
and digital 1/0 signal lines. By installing analog input SCPsin positions 0
through 3, and digital I/0 SCPsin paositions 4 through 7, you can keep these
types of signals separated by thewidth of the HP E1415 module. Thesignals
are further isolated because they remain separated on the connector module
aswell. Notethat in Figure 6-7 , even though only 7 of the eight SCP
positions are filled, the SCPs present are not installed contiguoudly, but are
arranged to provide as much digital/analog separation as possible.

If you have to mix analog input and digital 1/0O SCPs on the same side, the
following suggestions will help provide quieter analog measurements.

® Use analog input SCPs that provide filtering on the mixed side.
® Route only high level analog signals to the mixed side.

_

Lon 1

SCP Pos 0 SCP Pos 1 SCP Pos 2 SCP Pos 3
j—

|
—

A4

N

| SCP Pos 7 | | SCPPos6 |1 SCPPos5 !'[SCPPos4

¢

HP E1533 HP E1534
Digital I/O PWM, Freq &

Totalizer

HP E1531
Voltage DAC

empty

Sl

Figure 6-7. Separating Analog and Digital Signals

Appendix E

Wiring and Noise Reduction Methods 361

Recommended Wiring and Noise Reduction Techniques

Wiring Checklist

Unshielded signal wiring isvery common in Data A cquisition applications.
Whilethisworked well for low speed integrating A/D measurements and/or
for measuring high level signals, it does not work for high speed sampling
A/Ds, particularly when measuring low level signals like thermocouples or
strain gage bridge outputs. Unshielded wiring will pick up environmental
noise, causing measurement errors. Shielded, twisted pair signal wiring,
athough it is expensive, isrequired for these measurements unless an even
more expensive amplifier-at-the- signal-source or individual A/D at the
sourceis used.

Generally, the shield should be connected to ground at the DUT and left
open at the HP E1415. Floating DUTSs or transducers are an exception.
Connect the shield to HP E1415 GND or GRD terminasfor this case,
whichever gives the best performance. Thiswill usually be the GND
terminal. A single point shield to ground connection is required to prevent
ground loops. This point should be as near to the noise source as possible
and thisisusually at the DUT.

The following lists some recommended wiring techniques.

1. Useindividually shielded, twisted-pair wiring for each channel.

2. Connect the shield of each wiring pair to the corresponding Guard
(G) terminal on the Terminal Module .

3. The Terminal Module is shipped with the Ground-Guard
(GND-GRD) shorting jumper installed for each channel. These may
be left installed or removed, dependent on the following conditions:

a Grounded Transducer with shield connected to ground at the
transducer: Low frequency ground loops (DC and/or 50/60H2z)
can result if the shield is aso grounded at the Terminal Module
end. To prevent this, remove the GND-GRD jumper for that
channel.

b. Floating Transducer with shield connected to the transducer
at the source: In this case, the best performance will most likely
be achieved by leaving the GND-GRD jumper in place.

3. Ingeneral, the GND-GRD jumper can beleft in place unlessitis
necessary to break low frequency (below 1 kHz) ground loops.

362 Wiring and Noise Reduction Methods Appendix E

HP E1415 Guard TheHP E1415 guard connection provides a 10 KQ current limiting resistor
Connections between the guard terminals (G) and E1415 chassis ground for each 8

channel SCP bank. Thisisasafety device for the case where the Device
Under Test (DUT) isn't actually floating, the shield is connected tothe DUT
and al so connected to the HP E1415 guard terminal (G). The 10 KQ resistor
limits the ground loop current, which has been known to burn out shields.
This aso provides 20 KQ isolation between shields between SCP banks
which helps isol ate the noise source.

Common Mode Youmustbe very careful not to exceed the maximum common mode
S voltage referenced to the card chassis ground of +16 volts (£60 volts with
VOltag e Limits the HP E1513A Attenuator SCP). There is an exception to this when high
frequency (1 kHz - 20 kHz) common mode noise is present (see “HP E1415
Noise Rejection” below). Also, if the DUT is not grounded, then the shield
should be connected to the E1415 chassis ground.

When to Make Itis not always possible to state positively the best shield connection for all
; ; cases. Shield performance depends on the noise coupling mechanism which
Shield Connections is very difficult to determine. The above recommendations are usually the
best wiring method, but if feasible, experiment with shield connections to
determine which provides the best performance for your installation and
environment.

NOTE For a thorough, rigorous discussion of measurement noise, shielding, and
filtering, see “Noise Reduction Techniques in Electronic Systems” by Henry
W. Ott of Bell Laboratories, published by Wiley & Sons, ISBN
0-471-85068-3.

Noise Due to Inadequate Card Grounding

If either or both of the HP E1415 and HP E1482 (MXI Extender Modules)
are not securely screwed into the VXlbus Mainframe, noise can be
generated. Make sure that both screws (top and bottom) are screwed in tight.
If not, it is possible that CVT data could be more noisy than FIFO data
because the CVT is located in A24 space, the FIFO in A16 space; more lines
moving could cause noisier readings.

Appendix E Wiring and Noise Reduction Methods 363

HP E1415 Noise Rejection

See Figure 6-8 for the following discussion.

Normal Mode Noise Thisnoiseisactualy present at the signal source and is adifferential noise
(En m) (Hito Lo). Itiswhat isfiltered out by the buffered filters on the HP E1502,
E1503, E1508, and E1509 SCPs.

Common Mode Thisnoiseiscommon to both the Hi and Lo differential signal inputs. Low
Noise (EC m) frequency Ecm isvery effectively rejected by agood differential

instrumentation amplifier, and it can be averaged out when measured
through the Direct Input SCP (HP E1501). However, high frequency Ecmis
rectified and generates an offset with the amplifier and filter SCPs (such as
HP E1502, HP E1503, HP E1508, and HP E1509). Thisis since these SCPs
have buffer-amplifiers on board and is a characteristic of amplifiers. The
best way to deal with thisisto prevent the noise from getting into the
amplifier.

Keeping Common Most common mode noise is about 60 Hz, so the differential amplifier
Mode Noise out of rejection is very good. The amplifier Common Mode Noise characteristics
o are:
the Amplifier
120 dB flat to 300 Hz, then 20 dB/octave rollof f

TheHP E1415 amplifiersare selected for low gain error, offset, temperature
drift, and low power. These characteristics are generally incompatible with
good high frequency CMR performance. M ore expensive, high performance
amplifiers can solve this problem, but since they aren't required for many
systems, HP elected to handle thiswith the High Frequency Common Mode
Filter option to the HP E1586A Remote Rack Panel (HP E1586 Option 001,
RF Filter) discussed below.

Shielded, twisted pair lead wire generally does a good job of keeping high
frequency common mode noise out of the amplifier, provided the shield is
connected to the HP E1415 chassis ground through a very low impedance.
(Not viathe guard terminal - The HP E1415 guard terminal connection
shown inthe HP E1415 User’'s manua does not consider the high frequency
Ecm problem, and is there to limit the shield current and to allow the DUT
to float up to some DC common mode voltage subject to the maximum £16
volt input specification limit.

This conflicts with the often recommended good practice of grounding the
shield at the signal source and only at that point to eliminate line frequency
ground loops, which can be high enough to burn up ashield. Werecommend
that you follow this practice, and if you see high frequency common mode
noise (or suspect it), tie the shield to the HP E1415 ground through a0.1 pF
capacitor. At high frequencies, thisdrives the shield voltage to O volts at the
HP E1415 input. Due to inductive coupling to the signal leads, the Ecm
voltage on the signal leads is also driven to zero.

364 Wiring and Noise Reduction Methods Appendix E

Normal Mode
(differential)
Noise Source

HP E1586 SCSI cable
with Filter Option 001

110 dB CMR to 10 MHz

HP E1419

Option A3F
SCSI to DIN

thermocouple Hi
BNIVS 'S 3 SN pray7ey B A 7\ \
ENM _—
Lo
RC filter -
\ L@— c
shielded twisted pair cable /;7_‘|L7 5UE
/ jumper
configured
reAmovabIe
Common Mode jumper
Noise Source
\ Note: RC filter is a series 5.11KOhm resistor with
a 220 pF capacitor to GND
rT7DUT Ground E1419 Ground /7

Reducing Common

Mo
U

de Rejection
sing Tri-Filar

Transformers

Figure 6-8. HF Common Mode Filters

One HP E1413 customer determined that greater than 100 dB CMR to 10
MHz was required to get good thermocouple (TC) measurementsin histest
environment. To accomplish this requires the use of tri-filar transformers
which are an option to the HP E1586A Remote Rack Terminal Panel. (This
also provides superior isothermal reference block performance for
thermocouple measurements.) Thisworks by virtue of the inductance in the
shield connected winding presenting a significant impedance to high
frequency common mode noise and forcing all the noise voltage to be
dropped across the winding. The common mode noise at the input amplifier
side of the winding isforced to 0 volts by virtue of the low impedance
connection to the HP E1415 ground via the selectable short or parallel
combination of 1 kQ and 0.1 yF. The short can't be used in situations where
thereis avery high common mode voltage, (DC and/or AC) that could
generate very large shield currents.

The tight coupling through the transformer windings into the signal Hi and
Low leads, forces the common mode noise at the input amplifier side of
those windings to O volts. This achieves the 110 dB to 10 MHz desired,
keeping the high frequency common mode noise out of the amplifier, thus
preventing the amplifier from rectifying thisinto an offset error.

This effectively does the same thing that shielded, twisted pair cable does,
only better. Itisespecially effectiveif the shield connectiontothe HP E1415
ground can't beavery low impedance dueto large DC and/or low frequency
common mode voltages.

Thetri-filar transformers don't limit the differential (normal mode) signal
bandwidth. Thus, removing the requirement for "slowly varying signal
voltages'. The nature of the tri-filar transformer, or, more accurately,
common-mode inductor, isthat it provides afairly high impedance to

Appendix E

Wiring and Noise Reduction Methods 365

common mode signals, and a quite low impedance to differential mode
signals. Theratio of common-mode impedance to differential-mode
impedance for the transformer we useis ~ 3500:1. Thus, thereis NO
differential mode bandwidth penalty incurred by using the tri-filar
transformers.

366 Wiring and Noise Reduction Methods Appendix E

Appendix F

Generating User Defined Functions

Introduction

The HP E1415 Algorithmic Closed Loop Control Card has alimited set of
mathematical operations such as add, subtract, multiply, and divide. Many
control applications require functions such asquareroot for calculating flow
rate or atrigonometric function to correctly transition motion of moving
object from a start to ending position. In order to represent a sine wave or
other transcendental functions, one could use a power series expansion to
approximate the function using a finite number of algebraic expressions.
Since the above mentioned operations can take from 1.5usec to 4usec for
each floating point calculation, a complex waveform such as sine(x) could
take more than 100usec to get the desired result. A faster solution is
desirable and available.

The HP E1415 provides a sol ution to approximating such complex
waveforms by using a piece-wise linearization of virtually any complex
waveform. Thetechniqueissimple. The DOS disc supplied with your HP
E1415 contains both a'C’ and Rocky Mountain BASIC program which
calculates 128 Mx+B segments over a specified range of values for the
desired function. Y ou supply the function; the program generates the
segmentsin atable. The resulting table can be downloaded into the HP
E1415's RAM with the ALG:FUNC:DEF command where you can select
any desired name of thefunction(i.e. sin(x), tan(x), etc.). Upto 32 functions
can becreated for usein algorithms. At runtimewherethefunctionispassed
an X’ value, thetimeto calculate the Mx+B segmented linear approximation
IS approximately 17jsec.

The HP E1415 actually uses this technique to convert volts to temperature,
strain, etc. The accuracy of the approximation isreally based upon how well
you select the range over which the table is built. For thermocouple
temperature conversion, the HP E1415 fixes the range to the lowest A/D
range(+/-64millivolts) so that small microvolt measurements yield the
proper resolution of the actual temperature for a non-linear transducer. In
addition, the HP E1415 permits you to create Custom Engineering Unit
conversion for your transducer so that when the voltage measurement is
actually made the EU conversion takes place(see SENS:FUNC:CUST).
Algorithms deal with the resulting floating point numbers generated during
the measurement phase and may require further complex mathematical
operations to achieve the desired result.

With some complex waveforms, you may actually want to break up the
waveform into several functionsin order to get the desired accuracy. For
example, suppose you need to generate a square root function for both
voltage and strain calculations. The voltages are only going to rangefrom O
to +/-16volts, worst case. The strain measurements return numbersin
microstrain which range in the 1000's. Trying to represent the square root

Appendix F

Generating User Defined Functions 367

function over the entire range would severely impact the accuracy of the
approximation. Remember, the entire range is broken up into only 128
segments of Mx+B operations. If you want accuracy, you MUST limit the
range over which calculations are made. Many transcendental functionsare
simply used as a scaling multiplier. For example, asine wave function is
typically created over arange of 360 degrees or 2* Pl radians. After which,
the function repeatsitself. It's asimple matter to make sure the X’ termiis
scaled to this range before calculating the result. This concept should be
used almost exclusively to obtain the best results.

Haversine Example.

The following is an example of creating a haversine function (a sine wave
over the range of -PI/2 to PI/2). The resulting function represents afairly
accurate approximation of this non-linear waveform when you limit the
range asindicated. Since the tables must be built upon binary
boundaries(i.e. .125, .25, .5, 1, 2, 4, etc.) and since PI/2 is anumber greater
than 1 but less than 2, the next binary interval to include this range will be
2. Another requirement for building the table is that the waveform range
MUST be centered around O(i.e. symmetrical about the X-axis). If the
desired function is not defined on one side or the other of the Y-axis, then
the tableisright or left shifted by the offset from X=0 and the table values
are calculated correctly, but the table is built as though it were centered
about the X-axis. For the most part, you can ignore these last couple of
sentences if it does not make sense to you. The only reason its brought up
here isthat your accuracy may suffer the farther away from the X=0 point
you get unless you understand what resolution is available and how much
non-linearity is present in your waveform. We'll talk about that in the
"Limitations" section, later.

Figure 1 shows the haversine function as stated above. Thistype of
waveform istypical of the kind of acceleration and decel eration one wants
when moving an object from one point to another. The desired beginning
point would be the location at -Pl/2 and the ending point would be at P1/2.
With the desired range spread over +/- PI/2, the 128 segments are actually
divided over therange of +/- 2. Therefore, the 128 Mx+B line segmentsare
divided equally on both sides of X=0: 64 segmentsfor 0..2 and 64 segments
for -2..0.

368 Generating User Defined Functions Appendix F

+1

-pi/2 pi/2

Figure 6-9. A Haversine Function

A typical use of thisfunction would beto output an anal og voltage or current
a each Scan Trigger of the HP E1415 and over the range of the haversine.
For example, suppose you wanted a new position of an analog output to
move from 1mato 3maover a period of 100msec. If your TRIG:TIMER
setting or your EXTernal trigger was set to 2msec, then you would want to
force 50 intervals over the range of the haversine. This can be easily done
by using a scalar variable to count the number of times the algorithm has
executed and to scale the variable vaue to the -Pl/2 to PI/2 range. 3mais
multiplied times the custom function result over each interval which will
yield the shape of the haversine (.003*sin(x)+.001). Thisisillustratedinthe
example below. The program listings on the disc(and printed later in this
appendix) illustrate the actual program used to generate this haversine
function. Y ou need only supply the algebraic expression in my_function(),
the desired range over which to evaluate the function(which determines the
table range), and the name of the function. The Build_table() routine (see
examplefile sine_fn.cs) creates the table for the function, and the
ALG:FUNC:DEF writes that table into HP E1415 memory. Thetable
MUST be built and downloaded BEFORE trying to use the function.

Thefollowing is asummary of what commands and parameters are used in
the program examples. Table 1 shows some examples of the accuracy of the
custom function with variousinput values compared to an evaluation of the
actual transcendental function found in’C’ or RMB. Please note that the
Mx+B segments are | ocated on boundaries specified by 2/64 on each side of
X=0. Thismeansthat if you select the exact input value that was used for
the beginning of each segment, you WILL get exactly the calculated value
of that function at that point. Any point between segments will be an
approximation dependent upon the linearity of that segment. Also note that
valuesof X =2 and X =-2 will result in Y=infinity.

Appendix F

Generating User Defined Functions 369

'C’ sin(-1.570798) | -1.000000 'HP E1415' sin(-1.570798) | -0.999905
'C’ sin(-1.256639) | -0.951057 'HP E1415' sin(-1.256639) | -0.950965
'C’ sin(-0.942479) | -0.809018 'HP E1415' sin(-0.942479) | -0.808944
'C’ sin(-0.628319) | -0.587786 'HP E1415' sin(-0.628319) | -0.587740
'C’ sin(-0.314160) | -0.309017 'HP E1415' sin(-0.314160) | -0.308998
'C’ sin(0.000000) | 0.000000 'HP E1415' sin(0.000000) | 0.000000
'C’ sin(0.314160) | 0.309017 'HP E1415' sin(0.314160) | 0.308998
'C’ sin(0.628319) | 0.587786 'HP E1415' sin(0.628319) | 0.587740
'C’ sin(0.942479) | 0.809018 'HP E1415' sin(0.942479) | 0.808944
'C’ sin(1.256639) | 0.951057 'HP E1415' sin(1.256639) | 0.950965
'C’ sin(1.570798) | 1.000000 'HP E1415' sin(1.570798) | 0.999905

Table 6-2. 'C’ Sin(x) Vs. HP E1415 Haversine Function

Limitations

As stated earlier, there are limitations to using this custom function
technique. Theselimitationsaredirectly proportional to the non-linearity of
the desired waveform. For example, suppose you wanted to represent the
function X* X* X over arange of +/-1000. The resulting binary range would
be +/-1024, and the segments would be partitioned at 1024/64 intervals.
This means that every 16 units would yield an Mx+B calculation over that
segment. Aslong as you input numbers VERY close to those cardinal
points, you will get good results. Strictly speaking, you will get perfect
resultsif you only calculate at the cardinal points, which may be reasonable
for your application if you limit your input values to exactly those 128
points.

Y ou may also shift the waveform anywhere aong the X-axis, and
Build_table() will provide the necessary offset calculations to generate the
proper table. Be aware too that shifting the table out to greater magnitudes
of X may also impact the precision of your results dependent upon the
linearity of your waveform. Suffice it to say that you will get your best
resultsand it will be easiest for you to grasp what your doing if you stay near
the X=0 point since most of the results of your measurements will have
1le-6..16 values for volts.

Onefinal note. Y ou may seetruncation errorsin the fourth digit of your
results. Thisis because only 15 bits of your input valueis sent to the
function. This occurs because the same technique used for Custom EU
conversion is used here, and the method assumes input values are from the
16 bit A/D (15 bits=sign bit). Thisisevident in Table 1 wherethefirst and
last entries return £0.9999 rather than £1. For most applications this
accuracy should be more than adeguate.

370 Generating User Defined Functions Appendix F

Program Listings.

'C’ Version.
/* $Header: $

*

e C VRISION. . o
e RMB VErISioN.o

* C-SCPI Example program for the E1415A Algorithmic Closed Loop Controller

*

* sine_fn.cs
*

* This is a general purpose example of using Custom Functions to generate

* a haversine function.
*

* This is a template for building E1415A C programs that may use C-SCPI
* or SICL to control instruments.

*/

/* Standard include files
#include <stdlib.h>

#include <stdio.h>

#include <stddef.h>
#include <math.h>

*/

/* Most programs use one or more

* functions from the C standard

* library.

*/

/* Most programs will also use standard
*1/O functions.

*/

[* This file is also often useful */

/* Needed for any floating point fn's */

[* Other system include files */
/* Whenever using system or library calls, check the call description to see
* which include files should be included.

*/

/* Instrument control include files */

#include <cscpi.h>

/* C-SCPI include file */

/* Declare any constants that will be useful to the program. In particular,
* it is usually best to put instrument addresses in this area to make the code

* more maintainable.
*/
#define E1415_ADDR

INST_DECL(e1415, "E1415A", REGISTER);

"vxi,208" /* The SICL address of your E1415 */

[* E1415 */

[* Use something like this for HP-IB and HP E1405/6 Command Module */

/* #define E1415_ADDR "hpib,22,26"

/* The SICL address of your E1415 */

[*INST_DECL(e1415, "E1415A", MESSAGE); /* E1415*/

/* Declare instruments that will be accessed with SICL. These declarations
* can also be moved into local contexts.

*/
INST vxi;

/* VXI interface session */

Appendix F

Generating User Defined Functions 371

371

[* Trap instrument errors. If this function is used, it will be called every

* time a C-SCPI instrument puts an error in the error queue. As written, the
* function will figure out which instrument generated the error, retrieve the

* error, print a message, and exit. You may want to modify the way the error
* is printed, or comment out the exit if you want the program to continue.

*

* Note that this works only on REGISTER based instruments, because it was
* a C-SCPI register-based feature, not a general programming improvement.
* If you're using MESSAGE instruments, you'll still have to do SYST:ERR?:
*

* |f your test program generates errors on purpose, you probably don’t want
* this error function. If so, set the following "#if 1" to "#if 0". This

* function is most useful when you're trying to get your program running.

*/
#if 1 /* Set to O to skip trapping errors */
[*ARGSUSED?*/ /* Keeps lint happy */
void cscpi_error(INST id, int err)
{
char errorbuf[255]; /* Holds instrument error message */
char idbuf[255]; /* Holds instrument response to *IDN? */

cscpi_exe(id, "*IDN?\n", 6, idbuf, 255);
cscpi_exe(id, "SYST:ERR?\n", 10, errorbuf, 255);
(void) fprintf(stderr, "Instrument error %s from %s\n", errorbuf, idbuf);

}
#endif

/* The following routine allows you to type SCPI commands and see the results.
* |f you don't call this from your program, set the following "#if 1" to
* "#if 0",

*/

#if 1 [* Set to O to skip this routine */

void do_interactive(void)

{

char command[5000];
char result[5000];
int32 error;

char string[256];

for(;;) {
(void) printf("SCPI command: ");
(void) fflush(stdout);
[* repeat until it actually gets something*/
while (!gets(command));
if ('*command) {
break;
}
result[0] = O;
cscpi_exe(el415, command, strlen(command), result, sizeof(result));
INST_QUERY(e1415, "syst:err?", "%d,%s", &error, string);
while (‘error) {
(void) printf("syst:err %d,'%s\n", error, string);
INST_QUERY(e1415,"syst:err?", "%d,%s", &error, string);
}
if (result[0]) {
(void) printf("result: %s\n", result);

372 Generating User Defined Functions Appendix F

}

}
#endif

[* Print usage information */
void usage(char *prog_name)

{

(void) fprintf(stderr, "usage: %s algorithm_file...\n", prog_name);

}

/* Get an algorithm from a filename */
static char *get_algorithm(char *file_name)

{
FILE *f; /* Algorithm file pointer */
int32 a_size; [* Algorithm size */
int c; [* Character read from input */
char *algorithm; /* Points to algorithm string */

f = fopen(file_name, "r");

if (1) {
(void) fprintf(stderr, "Error: can't open algorithm file '%s"\n",
file_name);
exit(1);
}
a_size = 0; /* Count length of algorithm */
while (getc(f) != EOF) {
a_size++;
}
rewind(f);
algorithm = malloc(a_size + 1); /* Storage for algorithm */
a_size =0; /* Use as array index */

while ((c = getc(f)) I=EOF){ /* Read the algorithm */
algorithm[a_size] = ¢c;
a_size++;

}

algorithm[a_size] = 0; /* Null terminate */

(void) fclose(f);

return algorithm; /* Return algorithm string */

}

I*F
* NAME: static float64 two_to_the_N()
*

* TASK: Calculates 2n

*/

static float64 two_to_the_N(int32 n)
{
[* compute 2”n */
floaté4 r=1,;
int32 i;
for (i=0;i<n;i++)
r*=2;

Appendix F

Generating User Defined Functions

373

return (r);

}

I*F
* NAME: static int32 round32f()

*

* TASK: Rounds a 32-bit floating point number.
*/

static int32 round32f(float64 number)
{
/* add or subtract 0.5 to round based on sign of number */
float64 half = (number >0.0)?0.5:-0.5;
return((int32)(number + half));

}

/*F *k%k * *kkkkkkk
* NAME: static float64 my_function()

*

* TASK: User-supplied function for calculating desired results of f(x).
*

* HAVERSINE

*/

float64 my_function(float64 input)
{
float64 returnValue;
returnValue = sin(input);
return(returnValue);

}

I*F
* NAME: void Build_table()

*

* TASK: Generates tables of mx+b values used for Custom Functions
* in the E1415A.

* Generate the three coefficients for the CUSTOM FUNCTION algorithm:
* a. The "exponent" value

* b. The "slope" or "M" value

* c. The "intercept" or "B" value.

*INPUT PARAMETERS:

* float64 max_input - maximum input expected
* float64 min_input - minimum input expected
* float64 (*custom_function)(float64 input)

* - pointer to user function

* OUTPUT PARAMETERS

* float64 *range - returned table range

* float64 *offset - returned table offset

* uintlé *conv_array - returned coeficient array:
* (512 values for piecewise)

*

F/

void Build_table(float64 max_input, float64 min_input,
float64 (*custom_function)(float64 input),
float64 *range, float64 *offset,

374 Generating User Defined Functions Appendix F

uintl6 *conv_array)
{
uintl6
uintl6

M[128];
EX[128];
uintlé Bhigh[128];
uintlé Blow[128];
int32 B;

int16 ii;

int16 ii;

int32 Mfactor;
int32 Xfactor;
int32 Xofst;

float64
float64
float64 center;
float64 temp_range;
float64 t;

float64 slope;
float64 absslope;
float64 exponent;
float64 exponent2;
float64 input[129];
float64 result[129];

test_range;
tbl_range;

/*

* First calculate the mid point of the range of values from the min and max
* input values. The offset is the center of the range of min and max
*inputs. The purpose of the offset is to permit calculating the tables

* based upon a relative centering about the X axis. The offset simply

* permits the run-time code to send the corrected X values assuming

* the tables were built symetrically around X=0.

*/

center = min_input + (max_input - min_input) / 2.0F;

*offset = center;

temp_range = max_input - center;

test_range = (temp_range < 0.0)? -temp_range : temp_range;
/*

* Now calculate the closest binary representation of the test_range such
* that the new binary value is equal to or greater than the calculated

* test_range. Start with the lowest range(1/27128) and step up until the
* new binary range is equal or greater than the test_range.

*/
tbl_range = two_to_the_N(128); [* 2728 */
tbl_range = 1.0/tbl_range;
while (test_range > tbl_range)
{
tbl_range *= 2;
}
*range = thl_range;
Xofst = 157; [* exponent bias for DSP calculations */
/*

* Now divide the full range of the table into 128 segments (129 points)
* scanning first the positive side of the X-axis and then the negative
* side of the X-axis.

Appendix F

Generating User Defined Functions

375

*

* Note that 129 points are calculated in order to generate a line segment
* for calculating slope.

*
* Also note that the entire binary range is built to include the min

* and max values entered as min_input and max_input.
*/

for (ii=0 ; ii<=64 ; ii++) /* 0 to +FS */
{
inputfii] = center + ((tbl_range/64.0)*(float64)ii);
result[ii] = (*custom_function)(input[ii]);

if (ii == 0) continue; /* This is the first point - skip slope */
jj= 64 +ii-1; /* generate numbers for prev segment */
[* for second and subsequent points */

t =resultfii-1]; /* using prev seg base */

if (t< 0.0) t *=-1.0; /* use abs value (magnitude) of t */

/* compute the exponent of the offset (B is 31 bits) */

if (t!=0.0)

{ /* don't take log of zero */

exponent = 31.0 - (log10(t)/log10(2.0));/* take log base 2 */
}

else

{

exponent = 100.0;

}

[* compute slope in bits (each table entry represents 512 hits) */
slope = (result[ii] - result[ii-1]) / 512.0;

[* don't take the log of a negative slope */
absslope = (slope < 0)? -slope : slope;

/* compute the exponent of the slope (M is 16 hits) */
if (absslope 1=0)

{

exponent2 = 15.0 -(log10(absslope)/log10(2.0));

}
else

{

exponent2 = 100.0;

}

/* Choose the smallest exponent -- maximize resolution */
if (exponent2 < exponent) exponent = exponent2;

Xfactor = (int32)(exponent);

if (t!1=0)
{
int32 Itemp = round32f(log10(t)/log10(2.0));
if ((Xfactor + Itemp) > 30)
{
Xfactor = 30 - Itemp;
}

376

Generating User Defined Functions

Appendix F

}

Mfactor = round32f(two_to_the_N(Xfactor)*slope);

if (Mfactor == 32768)
{
[* There is an endpoint problem. Re-compute if on endpoint */
Xfactor--;
Mfactor =round32f(two_to_the_N(Xfactor)*slope);
}

if ((Mfactor<=32767) && (Mfactor>= -32768))

{
[* only save if M is within limits */
/* Adjust EX to match runtime.asm */
EX[jj] = (uint16)(Xofst - Xfactor);
M[jji] = (uintl6)(Mfactor & OXFFFF); /* remove leading 1's*/
B = round32f(two_to_the_N(Xfactor)*result[ii-1]);
Bhigh[jj] = (uint16)((B >> 16) & 0x0000FFFF);
Blow[jj] = (uint16)(B & OxO000FFFF);

}
} /* end for */

for (ii=0 ; ii<=64 ; ii++) /* 0 to -FS */

{
input[ii] = center - ((tbl_range/64.0)*(float64)(ii));
result[ii] = (*custom_function)(input[ii]);
if (ii == 0) continue; /* This is the first point - skip slope */
j=ii-1; [* generate numbers for prev segment */
[* for second and subsequent points */
t = result[ii-1]; [* using prev seg base */

if (t< 0.0) t *=-1.0; [* use abs value (magnitude) of t */

[* compute the exponent of the offset (B is 31 bits) */
if (1=0.0)
{ [* don't take log of zero */
exponent = 31.0 - (log10(t)/log10(2.0));/* take log base 2 */
}
else
{
exponent = 100.0;
}

[* compute slope in bits (each table entry represents 512 bits) */
slope = (result]ii] - result[ii-1]) / 512.0;

/* don't take the log of a negative slope */
absslope = (slope < 0)? -slope : slope;

[* compute the exponent of the slope (M is 16 bits) */
if (absslope '=0)

{

exponent2 = 15.0 -(log10(absslope)/log10(2.0));

}
else

{

exponent2 = 100.0;

}

Appendix F

Generating User Defined Functions

377

[* Choose the smallest exponent -- maximize resolution */
if (exponent2 < exponent) exponent = exponent2;

Xfactor = (int32)(exponent);

if (t!1=0)
{
int32 Itemp = round32f(log10(t)/logl0(2.0));
if ((Xfactor + ltemp) > 30)
E(factor =30 - Itemp;
}
}

Mfactor = round32f(two_to_the_N(Xfactor)*slope);
if (Mfactor == 32768)
{
[* There is an endpoint problem. Re-compute if on endpoint */
Xfactor--;
Mfactor =round32f(two_to_the_N(Xfactor)*slope);
}
if ((Mfactor<=32767) && (Mfactor>= -32768))
{
[* only save if M is within limits */
/* Adjust EX to match runtime.asm */
EX[jj] = (uint16)(Xofst - Xfactor);
M[jj] = (uintl6)(Mfactor & OXFFFF); /* remove leading 1's*/
B = round32f(two_to_the_N(Xfactor)*result[ii-1]);
Bhigh[jj] = (uint16)((B >> 16) & 0x0000FFFF);
Blow[jj] = (uint16)(B & 0XxO000FFFF);
}
} * end for */

/*

* Build actual tables for downloading into the E1415 memory.

*

/

for (ii=0 ; ii<128 ; ii++)

{ /* copy 64 sets of coefficents */
conv_arraylii*4] = Miii];
conv_array[ii*4+1] = EX][ii];
conv_array[ii*4+2] = Bhighlii];
conv_arrayl[ii*4+3] = Blowf[ii];

/*
printf("%d %d %d %d %d\n"ii, MIii], EXii], Bhigh(ii], Blowii]);
%
}
return;
}

/* Main program */
ARGSUSED/ /* Keeps lint happy */
int main(int argc, char *argv[])

{
/* Main program local variable declarations */
char *algorithm; /* Algorithm string */
int alg_num; /* Algorithm number being loaded */
char string[333]; /* Holds error information */
int32 error; /* Holds error number */

378 Generating User Defined Functions Appendix F

#f 0 [* Setto 1 if reading algorithm files */
/* Check pass parameters */
if ((argc < 2) || (argc > 33)) { /* Must have 1 to 32 algorithms */

usage(argv[0]);
exit(1);
}
#endif
INST_STARTUP(); /* Initialize the C-SCPI routines */
#if0 /* Set to 1 to open interface session */

/* If you need to open a VXI device session, here’s how to do it. You need
* a VXI device session if the V382 is to source or respond to VXI
* backplane triggers (SICL ixtrig or ionintr calls).
*/
if (I (vxi = iopen("vxi"))) {
(void) fprintf(stderr, "SICL error: failed to open vxi interface.\n");
(void) fprintf(stderr, "SICL error %d: %s\n",
igeterrno(), igeterrstr(igeterrno()));
exit(1);
}
#endif

/* Open the E1415 device session with error checking. Copy and modify
* these lines if you need to open other instruments.
*/
INST_OPEN(e1415, E1415_ADDR); /* Open the E1415 */
if (1 e1415) { /* Did it open? */
(void) fprintf(stderr, "Failed to open the E1415 at address %s\n",
E1415_ADDR);
(void) fprintf(stderr, "C-SCPI open error was %d\n", cscpi_open_error);
(void) fprintf(stderr, "SICL error was %d: %s\n",
igeterrno(), igeterrstr(igeterrno()));
exit(1);
}
[* Check for startup errors */
INST_QUERY(e1415,"syst:err\n", "%d,%S", &error, string);
if (error) {
(void) printf("syst:err %d,%s\n", error, string);
exit(1);
}

/* Usually, you'll want to start from a known instrument state. The
* following provides this.

*/

INST_CLEAR(e1415); [* Selected device clear */
INST_SEND(e1415, "*RST;*CLS\n");

#if 0 [* Set to 1 to do self test */
/* Does the E1415 pass self-test? */
{
inttest_result; /* Result of E1415 self-test */
test_result = -1; /* Make sure it gets assigned */

Appendix F

Generating User Defined Functions

379

INST_QUERY(e1415, "*TST?\n", "%d", &test_result);
if (test_result) {
(void) fprintf(stderr, "E1415A failed self-test\n");
exit(1);
}

}
#endif

/* Setup SCP functions */
INST_SEND(el1415, "sens:func:volt (@116)\n"); /* Analog in volts */
INST_SEND(e1415, "sour:func:cond (@141)\n"); /* Digital output */

#if 0 [* Set to 1 to do calibration */
/* Perform Calibrate, if necessary */
{
int cal_result; /* Result of E1415 self-test */
cal_result = -1, [* Make sure it gets assigned */
INST_QUERY(e1415, ™CAL?\n", "%d", &cal_result);
if (cal_result) {
(void) fprintf(stderr, "E1415A failed calibration\n");
(void) fprintf(stderr, "Check FIFO for channel errors\n®);
exit(1);
}
}
#endif

/* Configure Trigger Subsystem and Data Format */

INST_SEND(e1415, "trig:sour timer;:trig:timer .001\n");
INST_SEND(el1415, "samp:timer 10e-6\n"); /* default */
INST_SEND(e1415, "form real,32\n");

/* Download Globals */
/* INST_SEND(e1415, "alg:def 'globals’,'static float x;\n"); */

/* Download Custom Function */

{
float64 maxinput; /* set to maximum expected input*/
float64 mininput; /* set to minimum expected input*/
float64 tableOffset; /* offset used in building table*/
uintlé coef_array[512]; /* 512 elements */
float64 tableRange; [* Range on which table was built*/

maxinput = 2;

minlnput = -2;

Build_table(maxInput, mininput, my_function, &tableRange,
&tableOffset, coef_array);

/* Download the table range and the table array to the card ~ */
[* Piecewise requires 128 sets of table values */

INST_SEND(e1415,"ALGorithm:FUNCtion:DEFine ’sin’,%f,%f,%1024b",
tableRange, tableOffset, coef_array);

380 Generating User Defined Functions Appendix F

/* Download algorithms */
#f0 /* Set to 1 if algorithms passed in as files */
/* Get an algorithm(s) from the passed filename(s). We assign sequential
* algorithm numbers to each successive file name: ALG1, ALG2, etc. when
* you execute this program as "<progname> langl lang2 lang3 ..."
*/
alg_num =1, /* Starting algorithm number */
while (argc > alg_num) {

algorithm = get_algorithm(argv[alg_num]); /* Read the algorithm */

[* Define the algorithm */
{
char alg[6]; [* Temporary algorithm name */
(void) sprintf(alg, "ALG%d", alg_num);
INST_SEND(el1415, "alg:def %S,%*B\n", alg,
strlen(algorithm) + 1, algorithm);

/* Check for algorithm errors */
INST_QUERY(e1415,"syst:err?\n", "%d,%S", &error, string);
if (error) {
(void) printf("While loading file %s, syst:err %d,%s\n",
argv[alg_num], error, string);
exit(1);
}
}

[* Free the malloc’ed memory */
free(algorithm);

alg_num++; /* Next algorithm */

}

(void) printf("All %d algorithm(s) loaded without errors\n\n", alg_num-1);

#else [* Download algorithm with in-line code */

algorithm =" \n"

"/* Example algorithm uses Custom Function.\n"

" * This algorithms builds a haversine.\n"

"\

"

" static float radians = 0, y;\n"

"y = sin(radians);\n"

"\n";

INST_SEND(el1415, "alg:def '"ALG1’,%*B\n", strlen(algorithm) + 1, algorithm);

#endif

/* Preset Algorithm variables */

/* Initiate Trigger System - start scanning and running algorithms */
INST_SEND(e1415,"init\n");

[* Print out results */

{
float32 pi = 3.14159654;

float32 radians;
float32 y;

Appendix F

Generating User Defined Functions

381

/* Note that alg:scal? won't execute until alg:upd is done */
for (radians = -pi/2.0; radians < pi/2.0; radians +=pi/ 10.0) {
INST_SEND(el1415, "alg:scal 'alg1’,'radians’,%f\n", radians);
INST_SEND(e1415, "alg:upd\n");
INST_QUERY(e1415, "alg:scal? 'algl’,’y’\n", "%f", &y);
printf(""C’ sin(%f): %f, 'E1415A" sin(%f): %An",radians,
(float32)sin((float64)radians), radians, y);
}
}

#if 1 /* Setto 1 if using User interactive commands to E1415 */
/* Call this function if you want to be able to type SCPI commands and
* see their responses. NOTE: switch to FORM,ASC to retrieve
* ASCII numbers during interactive mode.

*/
INST_SEND(e1415,"form asc\n");
do_interactive(); [* Calls cscpi_exe() in a loop */
#endif
#if 0

/* C-CSPI way to check for errors */
INST_QUERY(el1415,"syst:err\n", "%d,%S", &error, string);

if (error) {
(void) printf("syst:err %d,%s\n", error, string);
exit(1);
}
#endif
return O; /* Normal end of program */
}
#if 0

Example of results from program:

'C’ sin(-1.570798): -1.000000, 'E1415A’ sin(-1.570798): -0.999905
'C’ sin(-1.256639): -0.951057, *E1415A’ sin(-1.256639): -0.950965
'C’ sin(-0.942479): -0.809018, 'E1415A’ sin(-0.942479): -0.808944
'C’ sin(-0.628319): -0.587786, 'E1415A’ sin(-0.628319): -0.587740
'C’ sin(-0.314160); -0.309017, 'E1415A’ sin(-0.314160): -0.308998
'C’ sin(0.000000): 0.000000, 'E1415A’ sin(0.000000): 0.000000
'C’ sin(0.314160): 0.309017, 'E1415A’ sin(0.314160): 0.308998
'C’ sin(0.628319): 0.587786, 'E1415A’ sin(0.628319): 0.587740
'C’ sin(0.942479): 0.809018, 'E1415A’ sin(0.942479): 0.808944
'C’ sin(1.256639): 0.951057, 'E1415A’ sin(1.256639): 0.950965
'C’ sin(1.570798): 1.000000, 'E1415A’ sin(1.570798): 0.999905

#endif

382 Generating User Defined Functions Appendix F

RMB Version.
10 ! RE-SAVE "SINE_FN.ASC"

20!

30! DESCRIPTION: Example program to illustrate the use of Custom Functions
40! in the E1415A. This example shows the use of RMB.

50! This example shows the creation of a Haversine function.

60!

70 ! The Build_table subprogram receives the minimum and maximum ranges
80 ! over which the function it to be built. You supply the algebraic

90 ! expression for FNMy_function().

100!

110! i

120 INTEGER Coef_array(0:511),Error

130 REAL Hpibintfc,Cmdmodule,E1413_ladd,E1413addr

140 INTEGER Lin_piecewise,llin(0:3),Ipiec(0:514)

150 REAL Min_input,Max_input

160 DIM String$[333]

170 ASSIGN @ErrTO 1

180!

190! i

200! The following three lines should be customized for each installation
210 Hpibintfc=7 I Hpib interface number for E1415

220 Cmdmodule=9 ! Hpib address for command module for E1415
230 E1415 ladd=208 ! Logical address for E1415 card

240!
250 ON TIMEOUT Hpibintfc,12 GOTO End_

260 E1415addr=Hpibintfc*10000+Cmdmodule*100+E1415_ladd/8

270 ASSIGN @E1415 TO E1415addr

280 ASSIGN @Bus TO Hpibintfc;FORMAT OFF

290!

300 OUTPUT @E1415;"*RST;*CLS"

310 OUTPUT @E1415;"*IDN?"

320 ENTER @E1415;String$

330 PRINT String$

340 !

350 ! Select the Domain values for the function.

360 !

370 Min_input=-2

380 Max_input=2

390 CALL Build_table(Max_input,Min_input,Table_range,Table_offset,Coef_array(*))
400 !

410 ! Download the function table and define the function

420 |
430 Ipiec(0)=256*NUM("#")+NUM("4") Ibuild block
440 Ipiec(1)=256*NUM("1")+NUM("0") 11024 bytes
450 Ipiec(2)=256*NUM("2")+NUM("4") 1512 Integers

460 FORIi=0 TO 511

470 Ipiec(li+3)=Coef_array(li)

480 NEXTIi

490 GOSUB Err_check

500 OUTPUT @E1415;"ALG:FUNC:DEF 'sin’,";Table_range;",";Table_offset;",";
510 OUTPUT @Bus;lpiec(*) ladd block

520 OUTPUT @Bus;CHR$(10);END lterminate
530 !

540 GOSUB Err_check

550 !

560 ! Now define an algorithm to use sin(x) and tests its functionality.
570 !

Appendix F

Generating User Defined Functions

383

580 OUTPUT @E1415;"alg:def 'algl’,’static float y,radians=0;y=sin(radians);"
590 OUTPUT @E1415;"form ascii;:trig:timer .001;:init"

600 RAD !use radians

610 GOSUB Err_check

620 FOR Radians=-P1/2 TO PI/2 STEP PI/10

630 OUTPUT @E1415;"alg:scal 'algl’,’radians’,";Radians;";upd"

640 OUTPUT @E1415;"alg:scal? 'algl’,'y™

650 ENTER @E1415;Y

660 PRINT USING This;"”"RMB’ sin(radians): ";SIN(Radians);" 'E1415A’ sin(Radians): ";Y
670 This:IMAGE K,SD.DDDD,K,SD.DDDD

680 NEXT Radians

690 STOP

700 End_: !

710 PRINT "HPIB TIMEOUT"

720 STOP

730 Err_check:REPEAT ! Check for any errors

740 OUTPUT @E1415;"SYST:ERR?"

750 ENTER @E1415;Error,String$

760 IF Error THEN

770 OUTPUT @Err;"Error returned: "&VALS$(Error)&". "&String$

780 END IF

790 UNTIL Error=0

800 RETURN

810 END

820 | HHHHEHHEHHIHHE R R R A 830 |
840 ! Subprogram Build_eu_table

850 ! TASK: Generates tables of mx+b values for downloading to E1415 DSP

860 !

870! Generate the three coefficients for the EU algorithm:
880! a. The "exponent" value

890! b. The "slope" or "M" value

900! c. The "intercept" or "B" value.

910!

920 ! INPUT PARAMETERS:

930! REAL Min_input - lowest expected value

940 ! REAL Max_input - largest expected value

950 ! zero generates piecewise table
960 ! OUTPUT PARAMETERS

970 ! REAL Table_range - returned table range

980 ! REAL Table_offset - how much to adjust X for shifted function
990 ! INTEGER Coef_array - returned coeficient array:
1000'! (512 values)

1010!

1020 Build_eu_table:SUB Build_table(REAL Min_input,Max_input,Table_range,Table_offset,INTEGER
Coef_array(*))

1030 INTEGER M(128),Ex(128),Bhigh(128),Blow(128),Xofst,Shift,li,Jj
1040 INTEGER Xfactor,Ltemp

1050 REAL Input(129),Result(129),Test_range, T,Exponent,Exponent2
1060 REAL Slope,Absslope,Mfactor,B,BlI

1070 !

1080 I Calculate the mid point of the range.

1090 !

1100 Center=Min_input+(Max_input-Min_input)/2

1110 Table_offset=Center

1120 Temp_range=Max_input-Center

1130 Test_range=ABS(Temp_range)

1140 !

1150 I Now calculate the closest binary representation of the test_range
1160 !

384 Generating User Defined Functions Appendix F

1170
1180
1190
1200
1210
1220

1230!

1240
1250
1260

1270!

1280
1290
1300

1310!

1320
1330
1340
1350
1360
1370
1380
1390
1400
1410
1420
1430
1440
1450
1460

1470!

1480
1490
1500
1510
1520

1530!

1540
1550
1560
1570
1580
1590
1600
1610
1620
1630
1640
1650
1660
1670
1680
1690
1700
1710
1720
1730
1740

Thbl_range=1/2"128
WHILE Test_range>Tbl_range
Tbl_range=Tbl_range*2
END WHILE
Table_range=Tbl_range
Xofst=157 ! exponent bias for DSP calculations
|
! Now divide the full range of the table into 128 segments (129 points)
! from -Rnge to +Rnge using the Custom() function function. We
! then generate the M, B and Ex values for the table to be downloaded.
|
! Note that we actually calculate 129 points but generate 128 sets of
I' M, B and Ex values.
1
|
FOR 1i=0 TO 64 STEP 1
Input(li)=Center+((Thl_range/64.0)*li)
Result(li)=FNMy_function(Input(li))
IF 1i=0 THEN GOTO Loopend1! This is the first point
I
I for second and subsequent points
Jj=64+li-1 I generate numbers for prev segment
T=ABS(Result(li-1)) 1 using abs value of prev seg base
1
I compute the exponent of the offset (B is 31 bhits)
IF T<>0. THEN ! don't take log of zero
Exponent=31.0-(LGT(T)/LGT(2.0)) ! take log base 2
ELSE
Exponent=100.0
END IF
|
I compute slope in bits (each table entry represents 512 bits)
Slope=(Result(li)-Result(li-1))/512.0
1
! don't take the log of a negative slope
Absslope=ABS(Slope)
|
I compute the exponent of the slope (M is 16 bits)
IF Absslope<>0. THEN
Exponent2=15.0-(LGT(Absslope)/LGT(2.0))
ELSE
Exponent2=100.0
END IF
! Choose the smallest exponent -- maximize resolution
IF Exponent2<Exponent THEN Exponent=Exponent2
Xfactor=INT(Exponent) !convert to integer
IF T<>0. THEN
Ltemp=PROUND(LGT(T)/LGT(2.0),0)
IF (Xfactor+Ltemp)>30 THEN Xfactor=30-Ltemp
END IF
Mfactor=PROUND (2" Xfactor*Slope,0)
IF Mfactor=32768.0 THEN
! There is an endpoint problem. Re-compute if on endpoint
Xfactor=Xfactor-1
Mfactor=PROUND (2" Xfactor*Slope,0)
END IF
IF (Mfactor<=32767.0 AND Mfactor>=-32768.0) THEN
I only save if M is in limits

Appendix F

Generating User Defined Functions

385

1750
1760
1770
1780
1790
1800
1810
1820
1830
1840
1850
1860
1870
1880
1890
1900
1910
1920
1930
1940
1950
1960
1970
1980

1990!

2000
2010
2020
2030
2040

2050'!

2060
2070
2080
2090
2100
2110
2120
2130
2140
2150
2160
2170
2180
2190
2200
2210
2220
2230
2240
2250
2260
2270
2280
2290
2300
2310
2320

Ex(Jj)=Xofst-Xfactor
M(Jj)=Mfactor I remove leading 1's
B=PROUND(2"Xfactor*Result(li-1),0)

Bhigh(Jj)=INT(B/65536.0) ! truncates
Bl=B-(Bhigh(Jj)*65536.0)
IF BI>32767 THEN BI=BI-65536
Blow(Jj)=BI

END IF

Loopendl:NEXT li
FOR Ii=0 TO 64 STEP 1
Input(li)=Center-((Tbl_range/64.0)*li)
Result(li)=FNMy_function(Input(li))
IF 1i=0 THEN GOTO Loopend2! This is the first point
!
! for second and subsequent points
Jj=li-1 ! generate numbers for prev segment
T=ABS(Result(li-1)) ! using abs value of prev seg base
I
I compute the exponent of the offset (B is 31 bits)
IF T<>0. THEN I don't take log of zero
Exponent=31.0-(LGT(T)/LGT(2.0)) ! take log base 2
ELSE
Exponent=100.0
END IF
|
I compute slope in bits (each table entry represents 512 bits)
Slope=(Result(li)-Result(li-1))/512.0
!
! don't take the log of a negative slope
Absslope=ABS(Slope)
|
I compute the exponent of the slope (M is 16 bits)
IF Absslope<>0. THEN
Exponent2=15.0-(LGT(Absslope)/LGT(2.0))
ELSE
Exponent2=100.0
END IF
! Choose the smallest exponent -- maximize resolution
IF Exponent2<Exponent THEN Exponent=Exponent2
Xfactor=INT(Exponent) !convert to integer
IF T<>0. THEN
Ltemp=PROUND(LGT(T)/LGT(2.0),0)
IF (Xfactor+Ltemp)>30 THEN Xfactor=30-Ltemp
END IF
Mfactor=PROUND (2" Xfactor*Slope,0)
IF Mfactor=32768.0 THEN
! There is an endpoint problem. Re-compute if on endpoint
Xfactor=Xfactor-1
Mfactor=PROUND (2" Xfactor*Slope,0)
END IF
IF (Mfactor<=32767.0 AND Mfactor>=-32768.0) THEN
I only save if M is in limits
Ex(Jj)=Xofst-Xfactor
M(Jj)=Mfactor I remove leading 1's
B=PROUND(2"Xfactor*Result(li-1),0)
Bhigh(Jj)=INT(B/65536.0) ! truncates
Bl=B-(Bhigh(Jj)*65536.0)
IF BI>32767 THEN BI=BI-65536

386 Generating User Defined Functions

Appendix F

2330 Blow(Jj)=BI
2340 END IF

2350 Loopend2:NEXT li
2360 !

2370 ! Copy the calculated table values to the output array

2380!

2390 !

2400 ! Store M, E, and B terms in array
2410 !

2420 FOR1i=0TO 127

2430 I copy 128 sets of coefficents
2440 Coef_array(li*4)=M(li)

2450 Coef_array(li*4+1)=Ex(li)

2460 Coef_array(li*4+2)=Bhigh(li)
2470 Coef_array(li*4+3)=Blow(li)

2480 IPRINT li,M(li),Ex(1i),Bhigh(li),Blow(li)
2490 NEXTIi

2500 SUBEND

2510'!

2520 | wxx*

2530 ! Insert your desired function here
2540

2550 DEF FNMy_function(REAL In_val)
2560 RETURN SIN(In_val)

2570 FNEND

Appendix F

Generating User Defined Functions

387

Notes:

388 Generating User Defined Functions Appendix F

Appendix G
Example Program Listings

This appendix includes listings of example programs that are not printed in
other partsof themanual. Theexample"simp_pid.cs" isshown here because

the listing in Chapter 3 is a shortened version.

e SIMP_PId.CS . o
efile_alg.Ccs ...
® SWAP.CS . o ottt e e e
M SINB.CS . ittt e

simp_pid.cs

[* $Header: $

*

* C-SCPI Example program for the E1415A Algorithmic Closed Loop Controller

*

* simp_pid.cs

*

* This program example shows the use of the intrinsic function PIDB.

*

* This is a template for building E1415A C programs that may use C-SCPI
* or SICL to control instruments.

*/

/* Standard include files */
#include <stdlib.h> /* Most programs use one or more
* functions from the C standard
* library.
*/
#include <stdio.h> [* Most programs will also use standard
* |/O functions.
*/
#include <stddef.h> /* This file is also often useful */
#include <math.h> /* Needed for any floating point fn's */

[* Other system include files */

[* Whenever using system or library calls, check the call description to see
* which include files should be included.

*/

/* Instrument control include files */
#include <cscpi.h> /* C-SCPI include file */

[* Declare any constants that will be useful to the program. In particular,

* it is usually best to put instrument addresses in this area to make the code

* more maintainable.

*/

#define E1415_ADDR "vxi,208" [* The SICL address of your E1415 */

Appendix G

Example Program Listings

389

INST_DECL(e1415, "E1415A", REGISTER); [* E1415*/

/* Use something like this for HP-IB and HP E1405/6 Command Module */
[* #define E1415_ADDR "hpib,22,26" /* The SICL address of your E1415 */
/*INST_DECL(e1415, "E1415A", MESSAGE); /* E1415*/

/* Declare instruments that will be accessed with SICL. These declarations
* can also be moved into local contexts.

*/

INST vxi; /* VXI interface session */

[* Trap instrument errors. If this function is used, it will be called every

* time a C-SCPI instrument puts an error in the error queue. As written, the
* function will figure out which instrument generated the error, retrieve the

* error, print a message, and exit. You may want to modify the way the error
* is printed, or comment out the exit if you want the program to continue.

*

* Note that this works only on REGISTER based instruments, because it was
* a C-SCPI register-based feature, not a general programming improvement.
* If you're using MESSAGE instruments, you'll still have to do SYST:ERR?:
*

* |f your test program generates errors on purpose, you probably don’t want
* this error function. If so, set the following "#if 1" to "#if 0". This

* function is most useful when you're trying to get your program running.

*/
#if 1 /* Set to O to skip trapping errors */
[*ARGSUSED?*/ /* Keeps lint happy */
void cscpi_error(INST id, int err)
{
char errorbuf[255]; /* Holds instrument error message */
char idbuf[255]; /* Holds instrument response to *IDN? */

cscpi_exe(id, "*IDN?\n", 6, idbuf, 255);
cscpi_exe(id, "SYST:ERR?\n", 10, errorbuf, 255);
(void) fprintf(stderr, "Instrument error %s from %s\n", errorbuf, idbuf);

}
#endif

/* The following routine allows you to type SCPI commands and see the results.
* |f you don't call this from your program, set the following "#if 1" to
* "#if 0",

*/

#if 1 [* Set to O to skip this routine */

void do_interactive(void)

{

char command[5000];
char result[5000];
int32 error;

char string[256];

for(;:) {
(void) printf("SCPI command: ");
(void) fflush(stdout);
[* repeat until it actually gets something*/
while (!gets(command));

390 Example Program Listings Appendix G

if (I*command) {
break;
}
result[0] = 0;
cscpi_exe(el415, command, strlen(command), result, sizeof(result));
INST_QUERY(el1415, "syst:err?", "%d,%s", &error, string);
while (‘error) {
(void) printf("syst:err %d,'%s\n", error, string);
INST_QUERY(e1415,"syst:err?", "%d,%s", &error, string);

}
if (result[0]) {
(void) printf("result: %s\n", result);
}
}
}
#endif

[* Print usage information */
void usage(char *prog_name)

{
}

(void) fprintf(stderr, "usage: %s algorithm_file...\n", prog_name);

/* Get an algorithm from a filename */
static char *get_algorithm(char *file_name)

{

FILE *f; /* Algorithm file pointer */

int32 a_size; /* Algorithm size */

int c; [* Character read from input */
char *algorithm; /* Points to algorithm string */

f = fopen(file_name, "r");

if (1) {
(void) fprintf(stderr, "Error: can't open algorithm file '%s"\n",
file_name);
exit(1);
}
a_size = 0; /* Count length of algorithm */
while (getc(f) != EOF) {
a_size++;
}
rewind(f);
algorithm = malloc(a_size + 1); /* Storage for algorithm */
a_size =0; /* Use as array index */

while ((c = getc(f)) I=EOF){ /* Read the algorithm */
algorithm[a_size] = ¢c;
a_size++;

}

algorithm[a_size] = 0; /* Null terminate */

(void) fclose(f);

return algorithm; /* Return algorithm string */

Appendix G

Example Program Listings

391

/* Main program */
[*ARGSUSED*/ /* Keeps lint happy */
int main(int argc, char *argv[])

{
/* Main program local variable declarations */
char *algorithm; /* Algorithm string */
int alg_num; /* Algorithm number being loaded */
char string[333]; /* Holds error information */
int32 error; [* Holds error number */
#f0 [* Setto 1 if reading algorithm files */

/* Check pass parameters */
if (argc < 2) || (argc > 33)){ /* Must have 1 to 32 algorithms */

usage(argv[0]);
exit(1);
}
#endif
INST_STARTUP(); /* Initialize the C-SCPI routines */
#f0 [* Set to 1 to open interface session */

/* If you need to open a VXI device session, here’s how to do it. You need
* a VXI device session if the V382 is to source or respond to VXI
* backplane triggers (SICL ixtrig or ionintr calls).
*/
if (! (vxi = iopen("vxi"))) {
(void) fprintf(stderr, "SICL error: failed to open vxi interface.\n");
(void) fprintf(stderr, "SICL error %d: %s\n",
igeterrno(), igeterrstr(igeterrno()));
exit(1);
}
#endif

/* Open the E1415 device session with error checking. Copy and modify
* these lines if you need to open other instruments.

*/
INST_OPEN(e1415, E1415_ADDR); /* Open the E1415 */
if (1 e1415) { /* Did it open? */

(void) fprintf(stderr, "Failed to open the E1415 at address %s\n",
E1415 ADDRY);
(void) fprintf(stderr, "C-SCPI open error was %d\n", cscpi_open_error);
(void) fprintf(stderr, "SICL error was %d: %s\n",
igeterrno(), igeterrstr(igeterrno()));
exit(1);
}
/* Check for startup errors */
INST_QUERY(e1415,"syst:err?\n", "%d,%S", &error, string);
if (error) {
(void) printf("syst:err %d,%s\n", error, string);
exit(1);
}

/* Usually, you'll want to start from a known instrument state. The
* following provides this.

*/

INST_CLEAR(e1415); [* Selected device clear */

392 Example Program Listings Appendix G

INST_SEND(e1415, "*RST;*CLS\n");

#if 0 /* Set to 1 to do self test */
/* Does the E1415 pass self-test? */
{
int test_result; /* Result of E1415 self-test */
test_result = -1; /* Make sure it gets assigned */

INST_QUERY(e1415, "*TST?\n", "%d", &test_result);
if (test_result) {
(void) fprintf(stderr, "E1415A failed self-test\n");
exit(1);
}

}
#endif

/* Setup SCP functions */
INST_SEND(el1415, "sens:func:volt (@116)\n"); /* Analog in volts */
INST_SEND(e1415, "sour:func:cond (@141)\n"); /* Digital output */

#if O /* Set to 1 to do calibration */
/* Perform Calibrate, if necessary */
{
int cal_result; /* Result of E1415 self-test */
cal_result = -1; /* Make sure it gets assigned */

INST_QUERY(e1415, "™CAL?\n", "%d", &cal_result);
if (cal_result) {
(void) fprintf(stderr, "E1415A failed calibration\n");
(void) fprintf(stderr, "Check FIFO for channel errors\n");
exit(1);
}
}
#endif
/* Configure Trigger Subsystem and Data Format */

INST_SEND(e1415, "trig:sour timer;:trig:timer .001\n");
INST_SEND(e1415, "samp:timer 10e-6\n"); /* default */
INST_SEND(e1415, "form real,32\n");

/* Download Globals */
/* INST_SEND(e1415, "alg:def 'globals’,'static float x;\n"); */

/* Download algorithms */
#f0 /* Set to 1 if algorithms passed in as files */
/* Get an algorithm(s) from the passed filename(s). We assign sequential
* algorithm numbers to each successive file name: ALG1, ALG2, etc. when
* you execute this program as "<progname> lang1 lang2 lang3 ..."
*/
alg_num =1, /* Starting algorithm number */
while (argc > alg_num) {

algorithm = get_algorithm(argv[alg_num]); /* Read the algorithm */

[* Define the algorithm */

{

Appendix G

Example Program Listings

393

char alg[6]; /* Temporary algorithm name */

(void) sprintf(alg, "ALG%d", alg_num);
INST_SEND(e1415, "alg:def %S, %*B\n", alg,
strlen(algorithm) + 1, algorithm);

[* Check for algorithm errors */
INST_QUERY/(el1415,"syst:err?\n", "%d,%S", &error, string);
if (error) {
(void) printf("While loading file %s, syst:err %d,%s\n",
argv[alg_num], error, string);

exit(1);
}
}
[* Free the malloc’ed memory */
free(algorithm);
alg_num-++; /* Next algorithm */

}

(void) printf("All %d algorithm(s) loaded without errors\n\n", alg_num-1);

#else [* Download algorithms with in-line code */
INST_SEND(el1415,"alg:def 'alg1’,’PIDB(1116,0100,0141.B0)\n");
#endif

[* Preset Algorithm variables */

INST_SEND(e1415,"alg:scal 'algl’,’'Setpoint’,%f\n", 3.0);
INST_SEND(el1415,"alg:scal 'algl’,’P_factor’,%f\n", 0.0001);
INST_SEND(e1415,"alg:scal 'algl’,’l_factor’,%f\n", 0.00025);
INST_SEND(el1415,"alg:upd\n");

/* Initiate Trigger System - start scanning and running algorithms */
INST_SEND(e1415,"init\n");

/* Alter run-time variables and Retrieve Data */
while(1) {

float32 setpoint = 0, process_info[4];

int i;

/* type in -100 to exit */

printf("Enter desired setpoint: ");

scanf("%f",&setpoint);

if (setpoint ==-100.00) break;

INST_SEND(e1415,"alg:scal 'algl’,'Setpoint’,%f\n", setpoint);

INST_SEND(e1415,"alg:upd\n”);

for (i=0;i<10;i++){/*read CVT 10 times */

/* ALG1 has elments 10-13 in CVT */
INST_QUERY(1415, "data:cvt? (@10:13)","%f",&process_info);
printf("Process variable: %f, %f, %f, %f\n",process_info[0],
process_info[1],process_info[2],process_info[3]);

}

#if 0 /* Setto 1 if using User interactive commands to E1415 */
/* Call this function if you want to be able to type SCPI commands and
* see their responses. NOTE: switch to FORM,ASC to retrieve
* ASCII numbers during interactive mode.

394 Example Program Listings

Appendix G

*/
do_interactive(); [* Calls cscpi_exe() in a loop */
#endif
#if 0
/* C-CSPI way to check for errors */
INST_QUERY(el1415,"syst:err\n", "%d,%S", &error, string);
if (error) {
(void) printf("syst:err %d,%s\n", error, string);
exit(1);
}
#endif

}

return O; /* Normal end of program */

}
#if 0
C-CSPI program.

Example of changing from Setpoint=3 to Setpoint=9 over a
trigger event period of Imsec using PIDB. Setpoint, error,
output, and status are shown:

Enter desired setpoint: 9

Process variable: 3.000122, -0.000122, 0.001538, 0.000000
Process variable: 2.998657, 6.001343, 0.003638, 0.000000
Process variable: 5.744141, 3.255859, 0.004178, 0.000000
Process variable: 7.165039, 1.834961, 0.004494, 0.000000
Process variable: 8.086914, 0.383301, 0.004673, 0.000000
Process variable: 9.018555, -0.018555, 0.004655, 0.000000
Process variable: 9.056152, -0.056152, 0.004637, 0.000000
Process variable: 9.054688, -0.054688, 0.004623, 0.000000
Process variable: 9.046387, -0.046387, 0.004612, 0.000000
Process variable: 9.010254, -0.010254, 0.004601, 0.000000

#endif

Appendix G

Example Program Listings

395

file_alg.cs

[* $Header: $

*

* C-SCPI Example program for the E1415A Algorithmic Closed Loop Controller

*

* file_alg.cs

*

* This example shows how to load algorithms from files. This example

* works properly with the file "mxplusb”, which contains the E1415A

* algorithm for calculating various combinations of Mx+B.

*

* This is a template for building E1415A C programs that may use C-SCPI
* or SICL to control instruments.

*/

/* Standard include files */
#include <stdlib.h> /* Most programs use one or more
* functions from the C standard
* library.
*/
#include <stdio.h> /* Most programs will also use standard
*1/O functions.
*/
#include <stddef.h> /* This file is also often useful */
#include <math.h> /* Needed for any floating point fn's */

[* Other system include files */

/* Whenever using system or library calls, check the call description to see
* which include files should be included.

*/

/* Instrument control include files */
#include <cscpi.h> /* C-SCPI include file */

/* Declare any constants that will be useful to the program. In particular,

* it is usually best to put instrument addresses in this area to make the code

* more maintainable.

*/

#define E1415_ADDR "vxi,208" /* The SICL address of your E1415 */
INST_DECL(el1415, "E1415A", REGISTER); /* E1415%/

[* Use something like this for HP-IB and HP E1405/6 Command Module */
[* #define E1415_ADDR "hpib,22,26" /* The SICL address of your E1415 */
[*INST_DECL(e1415, "E1415A", MESSAGE); /* E1415 */

/* Declare instruments that will be accessed with SICL. These declarations
* can also be moved into local contexts.

*/

INST VXI; /* VXI interface session */

[* Trap instrument errors. If this function is used, it will be called every
* time a C-SCPI instrument puts an error in the error queue. As written, the
* function will figure out which instrument generated the error, retrieve the

396 Example Program Listings Appendix G

* error, print a message, and exit. You may want to modify the way the error
* is printed, or comment out the exit if you want the program to continue.

*

* Note that this works only on REGISTER based instruments, because it was
* a C-SCPI register-based feature, not a general programming improvement.
* If you're using MESSAGE instruments, you'll still have to do SYST:ERR?:

*

* If your test program generates errors on purpose, you probably don’t want
* this error function. If so, set the following "#if 1" to "#if 0". This

* function is most useful when you're trying to get your program running.

*/
#if 1 /* Set to O to skip trapping errors */
[*ARGSUSED?*/ /* Keeps lint happy */
void cscpi_error(INST id, int err)
{
char errorbuf[255]; /* Holds instrument error message */
char idbuf[255]; /* Holds instrument response to *IDN? */

cscpi_exe(id, "*IDN?\n", 6, idbuf, 255);
cscpi_exe(id, "SYST:ERR?\n", 10, errorbuf, 255);
(void) fprintf(stderr, "Instrument error %s from %s\n", errorbuf, idbuf);

}
#endif

/* The following routine allows you to type SCPI commands and see the results.
* |f you don't call this from your program, set the following "#if 1" to
* "#if 0",

*/

#if 1 [* Set to O to skip this routine */

void do_interactive(void)

{

char command[5000];
char result[5000];
int32 error;

char string[256];

for(;;) {
(void) printf("SCPI command: ");
(void) fflush(stdout);
[* repeat until it actually gets something*/
while (!gets(command));
if ("*command) {
break;
}
result[0] = 0;
cscpi_exe(el415, command, strlen(command), result, sizeof(result));
INST_QUERY(e1415, "syst:err?", "%d,%s", &error, string);
while (‘error) {
(void) printf("syst:err %d,'%s\n", error, string);
INST_QUERY(e1415,"syst:err?", "%d,%s", &error, string);

}
if (result[0]) {
(void) printf("result: %s\n", result);
}
}
}
#endif

Appendix G Example Program Listings 397

[* Print usage information */
void usage(char *prog_name)

{
}

(void) fprintf(stderr, "usage: %s algorithm_file...\n", prog_name);

[* Get an algorithm from a filename */
static char *get_algorithm(char *file_name)

{
FILE *f; /* Algorithm file pointer */
int32 a_size; [* Algorithm size */
int c; [* Character read from input */
char *algorithm; /* Points to algorithm string */

f = fopen(file_name, "r");

if (1) {
(void) fprintf(stderr, "Error: can't open algorithm file '%s"\n",
file_name);
exit(1);
}
a_size = 0; /* Count length of algorithm */
while (getc(f) '= EOF) {
a_size++;
}
rewind(f);

algorithm = malloc(a_size + 1); /* Storage for algorithm */
a_size =0; /* Use as array index */
while ((c = getc(f)) I=EOF){ /* Read the algorithm */

algorithm[a_size] = ¢c;
a_size++;

}

algorithm[a_size] = 0; /* Null terminate */

(void) fclose(f);

return algorithm; /* Return algorithm string */

/* Main program */

[*ARGSUSED*/ /* Keeps lint happy */
int main(int argc, char *argv[])
{
/* Main program local variable declarations */
char *algorithm; /* Algorithm string */
int alg_num; /* Algorithm number being loaded */
char string[333]; /* Holds error information */
int32 error; [* Holds error number */
#if 1 [* Setto 1 if reading algorithm files */

/* Check pass parameters */

if (argc < 2) || (argc > 33)){ /* Must have 1 to 32 algorithms */

usage(argv[0]);
exit(1);
}

398 Example Program Listings

Appendix G

#endif

INST_STARTUP(); /* Initialize the C-SCPI routines */

#f0 [* Set to 1 to open interface session */
/* If you need to open a VXI device session, here’s how to do it. You need
* a VXI device session if the V382 is to source or respond to VXI
* backplane triggers (SICL ixtrig or ionintr calls).
*/
if (! (vxi = iopen("vxi"))) {
(void) fprintf(stderr, "SICL error: failed to open vxi interface.\n");
(void) fprintf(stderr, "SICL error %d: %s\n",
igeterrno(), igeterrstr(igeterrno()));
exit(1);
}
#endif

/* Open the E1415 device session with error checking. Copy and modify
* these lines if you need to open other instruments.
*/
INST_OPEN(e1415, E1415_ADDR); /* Open the E1415 */
if (1 e1415) { /* Did it open? */
(void) fprintf(stderr, "Failed to open the E1415 at address %s\n",
E1415 ADDRY);
(void) fprintf(stderr, "C-SCPI open error was %d\n", cscpi_open_error);
(void) fprintf(stderr, "SICL error was %d: %s\n",
igeterrno(), igeterrstr(igeterrno()));
exit(1);
}
/* Check for startup errors */
INST_QUERY(e1415,"syst:err?\n", "%d,%S", &error, string);
if (error) {
(void) printf("syst:err %d,%s\n", error, string);
exit(1);
}

/* Usually, you'll want to start from a known instrument state. The
* following provides this.

*/

INST_CLEAR(e1415); [* Selected device clear */
INST_SEND(e1415, "*RST;*CLS\n");

#if O /* Set to 1 to do self test */
/* Does the E1415 pass self-test? */
{
int test_result; /* Result of E1415 self-test */
test_result = -1; /* Make sure it gets assigned */

INST_QUERY(e1415, "*TST?\n", "%d", &test_result);
if (test_result) {
(void) fprintf(stderr, "E1415A failed self-test\n");
exit(1);

}
}
#endif

Appendix G

Example Program Listings

399

/* Setup SCP functions */
INST_SEND(el1415, "sens:func:volt (@116)\n"); /* Analog in volts */
INST_SEND(e1415, "sour:func:cond (@141)\n"); /* Digital output */

#if 0 /* Set to 1 to do calibration */
/* Perform Calibrate, if necessary */
{
int cal_result; /* Result of E1415 self-test */
cal_result = -1; /* Make sure it gets assigned */

INST_QUERY(e1415, "™CAL?\n", "%d", &cal_result);
if (cal_result) {
(void) fprintf(stderr, "E1415A failed calibration\n");
(void) fprintf(stderr, "Check FIFO for channel errors\n");
exit(1);
}
}
#endif
/* Configure Trigger Subsystem and Data Format */

INST_SEND(e1415, "trig:sour timer;:trig:timer .001\n");
INST_SEND(e1415, "samp:timer 10e-6\n"); /* default */
INST_SEND(e1415, "form real,32\n");

/* Download Globals */
/* INST_SEND(e1415, "alg:def 'globals’,'static float x;\n"); */

/* Download algorithms */
#if 1 /* Set to 1 if algorithms passed in as files */
/* Get an algorithm(s) from the passed filename(s). We assign sequential
* algorithm numbers to each successive file name: ALG1, ALG2, etc. when
* you execute this program as "<progname> lang1 lang2 lang3 ..."
*/
alg_num =1, /* Starting algorithm number */
while (argc > alg_num) {

algorithm = get_algorithm(argv[alg_num]); /* Read the algorithm */

[* Define the algorithm */

{

char alg[6]; [* Temporary algorithm name */

(void) sprintf(alg, "ALG%d", alg_num);
INST_SEND(e1415, "alg:def %S, %*B\n", alg,
strlen(algorithm) + 1, algorithm);

[* Check for algorithm errors */
INST_QUERY(e1415,"syst:err?\n", "%d,%S", &error, string);
if (error) {
(void) printf("While loading file %s, syst:err %d,%s\n",
argv[alg_num], error, string);
exit(1);
}
}

[* Free the malloc’ed memory */

400

Example Program Listings Appendix G

free(algorithm);

alg_num-++; /* Next algorithm */

}

(void) printf("All %d algorithm(s) loaded without errors\n\n", alg_num-1);

#else [* Download algorithms with in-line code */
INST_SEND(el1415,"alg:def 'alg1’,’PIDB(1116,0100,0141.B0)\n");
#endif

/* Preset Algorithm variables */
INST_SEND(el1415,"alg:scal 'algl’,’M’,%f\n", 1.234);
INST_SEND(el1415,"alg:scal 'algl’,'B’,%f\n", 5.678);
INST_SEND(e1415,"alg:upd\n");

/* Initiate Trigger System - start scanning and running algorithms */
INST_SEND(e1415,"init\n");

/* Alter run-time variables and Retrieve Data */
{
float32 sync, array[4];
inti;

for (i=0;i<10;i++){/* make 10 changes to X’ */
INST_SEND(e1415,"alg:scal 'algl’,’x’,.%f\n", (float32) i);
INST_SEND(el1415,"alg:scal 'algl’,'sync’,%f\n", 1); /* set sync */
INST_SEND(e1415,"alg:upd\n™);
/* The following alg:scal? command will not complete if the
* update has not occured. Then, it's a matter of waiting for
* the algorithm to complete and set sync = 2. This should
* happen almost instantly since the algorithm is executing
* every 1msec based upon trig:timer .001 above.

*/
sync = 0;
while (sync!=2.0) [* wait until algorithm sets sync to 2 */

INST_QUERY(e1415, "alg:scal? 'algl’,'sync™,"%f",&sync);
/* read results of Mx+B calculations */
INST_QUERY/(€1415, "data:cvt? (@10:13)","%f",&array);
printf("Array contents: %f, %f, %f, %f\n",array[0],
array[1],array[2],array[3]);
}

#f0 /*Setto 1 if using User interactive commands to E1415 */
/* Call this function if you want to be able to type SCPI commands and
* see their responses. NOTE: switch to FORM,ASC to retrieve
* ASCII numbers during interactive mode.
*/
do_interactive(); [* Calls cscpi_exe() in a loop */
#endif
#if 0
/* C-CSPI way to check for errors */
INST_QUERY(e1415,"syst:err?\n", "%d,%S", &error, string);
if (error) {
(void) printf("syst:err %d,%s\n", error, string);
exit(1);
}
#endif

Appendix G

Example Program Listings

401

}

return O; /* Normal end of program */

}

#if O

[* Example algorithm that calculates 4 Mx+B values upon
* sighal that sync == 1. M and B terms set by application
* program.

*

* filename: mxplusb

*/

static float M, B, X, sync;

if (First_loop) sync = 0;

if (sync==1){
writecvt(M*x+B, 10);
writecvt(-(M*x+B), 11);
writecvt((M*x+B)/2,12);
writecvt(2*(M*x+B),13);
sync = 2;

}

Results from running this program with the following
syntax: <progname> mxplusb

Array contents: 5.678000, -5.678000, 2.839000, 11.356000
Array contents: 6.912000, -6.912000, 3.456000, 13.823999
Array contents: 8.146000, -8.146000, 4.073000, 16.292000
Array contents: 9.379999, -9.379999, 4.690000, 18.759998
Array contents: 10.613999, -10.613999, 5.307000, 21.227999
Array contents: 11.848000, -11.848000, 5.924000, 23.695999
Array contents: 13.082000, -13.082000, 6.541000, 26.164000
Array contents: 14.315999, -14.315999, 7.158000, 28.631998
Array contents: 15.549999, -15.549999, 7.775000, 31.099998
Array contents: 16.783998, -16.783998, 8.391999, 33.567997

#endif

402 Example Program Listings Appendix G

swap.cs

[* $Header: $

*

* C-SCPI Example program for the E1415A Algorithmic Closed Loop Controller

*

* swap.cs

*

* This example shows how to perform algorithm swapping. This is an

* extension of the example file file_alg.cs

*

* This is a template for building E1415A C programs that may use C-SCPI
* or SICL to control instruments.

*/

/* Standard include files */
#include <stdlib.h> /* Most programs use one or more
* functions from the C standard
* library.
*/
#include <stdio.h> /* Most programs will also use standard
* |/O functions.
*/
#include <stddef.h> /* This file is also often useful */
#include <math.h> /* Needed for any floating point fn's */

[* Other system include files */

[* Whenever using system or library calls, check the call description to see
* which include files should be included.

*/

/* Instrument control include files */
#include <cscpi.h> /* C-SCPI include file */

[* Declare any constants that will be useful to the program. In particular,

* it is usually best to put instrument addresses in this area to make the code

* more maintainable.

*/

#define E1415_ADDR "vxi,208" /* The SICL address of your E1415 */
INST_DECL(el1415, "E1415A", REGISTER); /* E1415%/

/* Use something like this for HP-IB and HP E1405/6 Command Module */
[* #define E1415_ADDR "hpib,22,26" /* The SICL address of your E1415 */
/*INST_DECL(e1415, "E1415A", MESSAGE); /* E1415*/

/* Declare instruments that will be accessed with SICL. These declarations
* can also be moved into local contexts.

*/

INST vxi; /* VXI interface session */

[* Trap instrument errors. If this function is used, it will be called every

* time a C-SCPI instrument puts an error in the error queue. As written, the
* function will figure out which instrument generated the error, retrieve the

* error, print a message, and exit. You may want to modify the way the error

Appendix G

Example Program Listings

403

* is printed, or comment out the exit if you want the program to continue.

*

* Note that this works only on REGISTER based instruments, because it was
* a C-SCPI register-based feature, not a general programming improvement.
* If you're using MESSAGE instruments, you'll still have to do SYST:ERR?:

*

* |f your test program generates errors on purpose, you probably don’t want
* this error function. If so, set the following "#if 1" to "#if 0". This

* function is most useful when you're trying to get your program running.

*/
#if 1 [* Set to 0 to skip trapping errors */
ARGSUSED?/ [* Keeps lint happy */
void cscpi_error(INST id, int err)
{
char errorbuf[255]; /* Holds instrument error message */
char idbuf[255]; /* Holds instrument response to *IDN? */

cscpi_exe(id, "*IDN?\n", 6, idbuf, 255);
cscpi_exe(id, "SYST:ERR?\n", 10, errorbuf, 255);
(void) fprintf(stderr, "Instrument error %s from %s\n", errorbuf, idbuf);

}
#endif

/* The following routine allows you to type SCPI commands and see the results.
* If you don't call this from your program, set the following "#if 1" to
* "#if 0".

*/

#if 1 [* Set to 0 to skip this routine */

void do_interactive(void)

{

char command[5000];
char result[5000];
int32 error;

char string[256];

for(;;) {
(void) printf("SCPI command: ");
(void) fflush(stdout);
[* repeat until it actually gets something*/
while (Igets(command));
if ('*command) {
break;
}
result[0] = 0;
cscpi_exe(el415, command, strlen(command), result, sizeof(result));
INST_QUERY(e1415, "syst:err?", "%d,%s", &error, string);
while (‘error) {
(void) printf("syst:err %d,'%s\n", error, string);
INST_QUERY(el1415,"syst:err?", "%d,%s", &error, string);

}
if (result[0]) {
(void) printf("result: %s\n", result);
}
}
}
#endif

404 Example Program Listings Appendix G

[* Print usage information */
void usage(char *prog_name)

{

(void) fprintf(stderr, "usage: %s algorithm_file...\n", prog_name);

}

[* Get an algorithm from a filename */
static char *get_algorithm(char *file_name)

{
FILE *f; /* Algorithm file pointer */
int32 a_size; /* Algorithm size */
int c; /* Character read from input */
char *algorithm; /* Points to algorithm string */

f = fopen(file_name, "r");

if (1) {
(void) fprintf(stderr, "Error: can’t open algorithm file '%s’\n",
file_name);
exit(1);
}
a_size = 0; /* Count length of algorithm */
while (getc(f) != EOF) {
a_size++;
}
rewind(f);
algorithm = malloc(a_size + 1); /* Storage for algorithm */
a size =0; [* Use as array index */

while ((c = getc(f)) I=EOF){ /* Read the algorithm */
algorithm[a_size] = c;
a_sizet++;

}

algorithm[a_size] = 0; /* Null terminate */

(void) fclose(f);

return algorithm; /* Return algorithm string */

/* Main program */

ARGSUSED/ [* Keeps lint happy */
int main(int argc, char *argv[])
{
/* Main program local variable declarations */
char *algorithm; /* Algorithm string */
int alg_num; /* Algorithm number being loaded */
char string[333]; /* Holds error information */
int32 error; /* Holds error number */
#f0 [* Set to 1 if reading algorithm files */

/* Check pass parameters */
if ((argc < 2) || (argc > 33)){ /* Must have 1 to 32 algorithms */
usage(argv[0]);
exit(1);
}
#endif

Appendix G

Example Program Listings

405

INST_STARTUP(); /* Initialize the C-SCPI routines */

#f0 [* Set to 1 to open interface session */
/* If you need to open a VXI device session, here’s how to do it. You need
* a VXI device session if the V382 is to source or respond to VXI
* backplane triggers (SICL ixtrig or ionintr calls).
*/
if (I (vxi = iopen("vxi"))) {
(void) fprintf(stderr, "SICL error: failed to open vxi interface.\n");
(void) fprintf(stderr, "SICL error %d: %s\n",
igeterrno(), igeterrstr(igeterrno()));
exit(1);
}
#endif

/* Open the E1415 device session with error checking. Copy and modify
* these lines if you need to open other instruments.
*/
INST_OPEN(e1415, E1415_ADDR); /* Open the E1415 */
if (1 e1415) { /* Did it open? */
(void) fprintf(stderr, "Failed to open the E1415 at address %s\n",
E1415_ADDR);
(void) fprintf(stderr, "C-SCPI open error was %d\n", cscpi_open_error);
(void) fprintf(stderr, "SICL error was %d: %s\n",
igeterrno(), igeterrstr(igeterrno()));
exit(1);
}
[* Check for startup errors */
INST_QUERY(e1415,"syst:err\n", "%d,%S", &error, string);
if (error) {
(void) printf("syst:err %d,%s\n", error, string);
exit(1);
}

/* Usually, you'll want to start from a known instrument state. The
* following provides this.

*/

INST_CLEAR(e1415); [* Selected device clear */
INST_SEND(e1415, "*RST;*CLS\n");

#if 0 [* Set to 1 to do self test */
/* Does the E1415 pass self-test? */
{
inttest_result; /* Result of E1415 self-test */
test_result = -1; [* Make sure it gets assigned */

INST_QUERY(e1415, "*TST?\n", "%d", &test_result);
if (test_result) {
(void) fprintf(stderr, "E1415A failed self-test\n");
exit(1);
}
}
#endif

406

Example Program Listings

Appendix G

/* Setup SCP functions */
INST_SEND(e1415, "sens:func:volt (@116)\n"); /* Analog in volts */
INST_SEND(e1415, "sour:func:cond (@141)\n"); /* Digital output */

#if 0 /* Set to 1 to do calibration */
[* Perform Calibrate, if necessary */
{
int cal_result; /* Result of E1415 self-test */
cal_result = -1, [* Make sure it gets assigned */

INST_QUERY(e1415, "*CAL?\n", "%d", &cal_result);
if (cal_result) {
(void) fprintf(stderr, "E1415A failed calibration\n");
(void) fprintf(stderr, "Check FIFO for channel errors\n®);
exit(1);
}
}
#endif
/* Configure Trigger Subsystem and Data Format */

INST_SEND(e1415, "trig:sour timer;:trig:timer .001\n");
INST_SEND(el1415, "samp:timer 10e-6\n"); /* default */
INST_SEND(e1415, "form real,32\n");

/* Download Globals */
/* INST_SEND(e1415, "alg:def 'globals’,'static float x;\n"); */

/* Download algorithms */
#f0 /* Set to 1 if algorithms passed in as files */
/* Get an algorithm(s) from the passed filename(s). We assign sequential
* algorithm numbers to each successive file name: ALG1, ALG2, etc. when
* you execute this program as "<progname> lang1 lang2 lang3 ..."
*/
alg_num =1, [* Starting algorithm number */
while (argc > alg_num) {

algorithm = get_algorithm(argv[alg_num]); /* Read the algorithm */

/* Define the algorithm */
{
char alg[6]; [* Temporary algorithm name */
(void) sprintf(alg, "ALG%d", alg_num);
INST_SEND(e1415, "alg:def %S,%*B\n", alg,
strlen(algorithm) + 1, algorithm);

[* Check for algorithm errors */
INST_QUERY(e1415,"syst:err?\n", "%d,%S", &error, string);
if (error) {
(void) printf("While loading file %s, syst:err %d,%s\n",
argv[alg_num], error, string);
exit(1);
}
}

[* Free the malloc’ed memory */
free(algorithm);

Appendix G

Example Program Listings

407

alg_num-++; /* Next algorithm */

}

(void) printf("All %d algorithm(s) loaded without errors\n\n", alg_num-1);

#else [* Download algorithms with in-line code */
algorithm =" \n"\
"I* Example algorithm that calculates 4 Mx+B values upon\n"
" * signal that sync == 1. M and B terms set by application\n"
" * program. \n"
"\
" static float M, B, X, sync;\n"
" if (First_loop) sync = 0;\n"
"if(sync==1) {\n"
" writecvt(M*x+B, 10);\n"
" writecvt(-(M*x+B), 11);\n"
" writecvt((M*x+B)/2,12);\n"
" writecvt(2*(M*x+B),13);\n"
sync = 2;\n"
" HnY
INST_SEND(el1415, "alg:def 'ALG1’,500,%*B\n", strlen(algorithm) + 1, algorithm);
#endif

algorithm =" \n"\

"/* Example algorithm that calculates 4 Mx+B values upon\n*
" * signal that sync == 1. M and B terms set by application\n"
" * program. Calculations are different than above.\n"

"\

" static float M, B, X, sync;\n"

" if (First_loop) sync = 0;\n"

"if (sync==1) {\n"

" writecvt(-(M*x+B), 10);\n"

" writecvt(M*x+B, 11);\n"

" writecvt(2*(M*x+B),12);\n"

" writecvt((M*x+B)/2,13);\n"

" sync = 2;\n"

B AU

[* Preset Algorithm variables */
INST_SEND(el1415,"alg:scal 'algl’,’M’,%f\n", 1.234);
INST_SEND(el1415,"alg:scal 'algl’,'B’,%f\n", 5.678);
INST_SEND(e1415,"alg:upd\n");

/* Initiate Trigger System - start scanning and running algorithms */
INST_SEND(e1415,"init\n");

/* Alter run-time variables and Retrieve Data */
{
float32 sync, array[4];
inti;

for (i=0;i<10;i++){/* make 10 changes to X’ */
INST_SEND(e1415,"alg:scal 'algl’,’x’,.%f\n", (float32) i);
INST_SEND(el1415,"alg:scal 'algl’,'sync’,%f\n", 1); /* set sync */
INST_SEND(e1415,"alg:upd\n™);
/* The following alg:scal? command will not complete if the
* update has not occured. Then, it's a matter of waiting for

408 Example Program Listings

Appendix G

* the algorithm to complete and set sync = 2. This should
* happen almost instantly since the algorithm is executing
* every 1msec based upon trig:timer .001 above.

*/
sync = 0;
while (sync!=2.0) /* wait until algorithm sets sync to 2 */

INST_QUERY(e1415, "alg:scal? 'algl’,'sync™,"%f",&sync);
/* read results of Mx+B calculations */
INST_QUERY/(€1415, "data:cvt? (@10:13)","%f",&array);
printf("Array contents: %f, %f, %f, %f\n",array[0],
array[1],array[2],array[3]);
}
INST_SEND(el1415, "alg:def 'ALG1’, %*B\n",strlen(algorithm) + 1, algorithm);
INST_SEND(e1415, "alg:upd\n™);
printf("\nExecuting now with different algorithm\n\n");
[* Repeat with different algorithm running. */
for (i=0;i<10;i++){/* make 10 changes to X’ */
INST_SEND(e1415,"alg:scal 'algl’,’x’,.%f\n", (float32) i);
INST_SEND(el1415,"alg:scal 'algl’,'sync’,%f\n", 1); /* set sync */
INST_SEND(e1415,"alg:upd\n™);
/* The following alg:scal? command will not complete if the
* update has not occured. Then, it's a matter of waiting for
* the algorithm to complete and set sync = 2. This should
* happen almost instantly since the algorithm is executing
* every 1msec based upon trig:timer .001 above.

*/
sync = 0;
while (sync!=2.0) [* wait until algorithm sets sync to 2 */

INST_QUERY(e1415, "alg:scal? 'algl’,'sync™,"%f",&sync);
/* read results of Mx+B calculations */
INST_QUERY/(€1415, "data:cvt? (@10:13)","%f",&array);
printf("Array contents: %f, %f, %f, %f\n",array[0],
array[1],array[2],array[3]);
}

#if 1 /* Setto 1 if using User interactive commands to E1415 */
/* Call this function if you want to be able to type SCPI commands and
* see their responses. NOTE: switch to FORM,ASC to retrieve
* ASCII numbers during interactive mode.
*/
do_interactive(); [* Calls cscpi_exe() in a loop */
#endif
#if 0
/* C-CSPI way to check for errors */
INST_QUERY(e1415,"syst:err?\n", "%d,%S", &error, string);
if (error) {
(void) printf("syst:err %d,%s\n", error, string);
exit(1);
}
#endif

}

return O; /* Normal end of program */

}

#if O

Appendix G

Example Program Listings

409

[* Example algorithm that calculates 4 Mx+B values upon
* sighal that sync == 1. M and B terms set by application
* program.

*

* filename: mxplusb

*/

static float M, B, x, sync;

if (First_loop) sync = 0;

if (sync==1){
writecvt(M*x+B, 10);
writecvt(-(M*x+B), 11);
writecvt((M*x+B)/2,12);
writecvt(2*(M*x+B),13);
sync = 2;

}

Results from running this program with the following
syntax: <progname> mxplusb

Array contents: 5.678000, -5.678000, 2.839000, 11.356000
Array contents: 6.912000, -6.912000, 3.456000, 13.823999
Array contents: 8.146000, -8.146000, 4.073000, 16.292000
Array contents: 9.379999, -9.379999, 4.690000, 18.759998
Array contents: 10.613999, -10.613999, 5.307000, 21.227999
Array contents: 11.848000, -11.848000, 5.924000, 23.695999
Array contents: 13.082000, -13.082000, 6.541000, 26.164000
Array contents: 14.315999, -14.315999, 7.158000, 28.631998
Array contents: 15.549999, -15.549999, 7.775000, 31.099998
Array contents: 16.783998, -16.783998, 8.391999, 33.567997

#endif

410 Example Program Listings Appendix G

tri_sine.cs

[* $Header: $

*

* C-SCPI Example program for the E1415A Algorithmic Closed Loop Controller

*

* tri_sine.cs

*

* This example shows how to use Custom Functions in the E1415A by generating
* both a triangle and sine wave to a current output DAC.

*

* This is a template for building E1415A C programs that may use C-SCPI

* or SICL to control instruments.

*/

/* Standard include files */
#include <stdlib.h> /* Most programs use one or more
* functions from the C standard
* library.
*/
#include <stdio.h> /* Most programs will also use standard
* |/O functions.
*/
#include <stddef.h> /* This file is also often useful */
#include <math.h> /* Needed for any floating point fn's */

[* Other system include files */

[* Whenever using system or library calls, check the call description to see
* which include files should be included.

*/

/* Instrument control include files */
#include <cscpi.h> /* C-SCPI include file */

[* Declare any constants that will be useful to the program. In particular,

* it is usually best to put instrument addresses in this area to make the code
* more maintainable.

*/

#define E1415_ADDR "vxi,208" /* The SICL address of your E1415 */
INST_DECL(el1415, "E1415A", REGISTER); /* E1415%/

/* Use something like this for HP-IB and HP E1405/6 Command Module */
[* #define E1415_ADDR "hpib,22,26" /* The SICL address of your E1415 */
/*INST_DECL(e1415, "E1415A", MESSAGE); /* E1415*/

/* Declare instruments that will be accessed with SICL. These declarations
* can also be moved into local contexts.

*/

INST vxi; /* VXI interface session */

[* Trap instrument errors. If this function is used, it will be called every

* time a C-SCPI instrument puts an error in the error queue. As written, the
* function will figure out which instrument generated the error, retrieve the

* error, print a message, and exit. You may want to modify the way the error

Appendix G

Example Program Listings

411

* is printed, or comment out the exit if you want the program to continue.

*

* Note that this works only on REGISTER based instruments, because it was
* a C-SCPI register-based feature, not a general programming improvement.
* If you're using MESSAGE instruments, you'll still have to do SYST:ERR?:

*

* |f your test program generates errors on purpose, you probably don’t want
* this error function. If so, set the following "#if 1" to "#if 0". This

* function is most useful when you're trying to get your program running.

*/
#if 1 [* Set to 0 to skip trapping errors */
ARGSUSED?/ [* Keeps lint happy */
void cscpi_error(INST id, int err)
{
char errorbuf[255]; /* Holds instrument error message */
char idbuf[255]; /* Holds instrument response to *IDN? */

cscpi_exe(id, "*IDN?\n", 6, idbuf, 255);
cscpi_exe(id, "SYST:ERR?\n", 10, errorbuf, 255);
(void) fprintf(stderr, "Instrument error %s from %s\n", errorbuf, idbuf);

}
#endif

/* The following routine allows you to type SCPI commands and see the results.
* If you don't call this from your program, set the following "#if 1" to
* "#if 0".

*/

#if 1 [* Set to 0 to skip this routine */

void do_interactive(void)

{

char command[5000];
char result[5000];
int32 error;

char string[256];

for(;;) {
(void) printf("SCPI command: ");
(void) fflush(stdout);
[* repeat until it actually gets something*/
while (Igets(command));
if ('*command) {
break;
}
result[0] = 0;
cscpi_exe(el415, command, strlen(command), result, sizeof(result));
INST_QUERY(e1415, "syst:err?", "%d,%s", &error, string);
while (‘error) {
(void) printf("syst:err %d,'%s\n", error, string);
INST_QUERY(el1415,"syst:err?", "%d,%s", &error, string);

}
if (result[0]) {
(void) printf("result: %s\n", result);
}
}
}
#endif

412 Example Program Listings Appendix G

[* Print usage information */
void usage(char *prog_name)

{

(void) fprintf(stderr, "usage: %s algorithm_file...\n", prog_name);

}

[* Get an algorithm from a filename */
static char *get_algorithm(char *file_name)

{
FILE *f; /* Algorithm file pointer */
int32 a_size; /* Algorithm size */
int c; /* Character read from input */
char *algorithm; /* Points to algorithm string */

f = fopen(file_name, "r");

if (1) {
(void) fprintf(stderr, "Error: can’t open algorithm file '%s’\n",
file_name);
exit(1);
}
a_size = 0; /* Count length of algorithm */
while (getc(f) != EOF) {
a_size++;
}
rewind(f);
algorithm = malloc(a_size + 1); /* Storage for algorithm */
a size =0; [* Use as array index */

while ((c = getc(f)) I=EOF){ /* Read the algorithm */
algorithm[a_size] = c;

a_sizet++;
}
algorithm[a_size] = 0; /* Null terminate */
(void) fclose(f);
return algorithm; /* Return algorithm string */
}
/*F *k%k * *kkkkkkk

* NAME: static float64 two_to_the_N()

*

* TASK: Calculates 2*n
*/

static float64 two_to_the_ N(int32 n)

{
[* compute 2”n */
float64 r=1;

int32 i;
for (i=0;i<n;i++)
r*=2;
return (r);

}

/*F *kkkkk *kkkkkkk

* NAME: static int32 round32f()

Appendix G

Example Program Listings

413

*

* TASK: Rounds a 32-bit floating point number.
*/

static int32 round32f(float64 number)
{
/* add or subtract 0.5 to round based on sign of number */
float64 half = (number >0.0)?0.5:-0.5;
return((int32)(number + half));

}

I*F
* NAME: static float64 my_function()

*

* TASK: User-supplied function for calculating desired results of f(x).
*

* HAVERSINE

*/

float64 my_function(float64 input)
{
float64 returnValue;
returnValue = sin(input);
return(returnValue);

}

/*F *k%k * *kkkkkkk
* NAME: void Build_table()

*

* TASK: Generates tables of mx+b values used for Custom Functions

* in the E1415A.

*

* Generate the three coefficients for the CUSTOM FUNCTION algorithm:
* a. The "exponent" value

* b. The "slope" or "M" value

* c. The "intercept" or "B" value.

*

* INPUT PARAMETERS:

* float64 max_input - maximum input expected
* float64 min_input - minimum input expected
* float64 (*custom_function)(float64 input)

* - pointer to user function

* OUTPUT PARAMETERS

* float64 *range - returned table range

* float64 *offset - returned table offset

* uintlé *conv_array - returned coeficient array:
* (512 values for piecewise)

*

F/

void Build_table(float64 max_input, float64 min_input,
float64 (*custom_function)(float64 input),
float64 *range, float64 *offset,
uintlé *conv_array)

{

uint16M[128];

uintl6EX[128];

uint16Bhigh[128];

414 Example Program Listings Appendix G

uintlé Blow[128];
int32 B;

int16 ii;

intlé jj;

int32 Mfactor;
int32 Xfactor;
int32 Xofst;

float64
float64
float64 center;
float64 temp_range;
float64 t;

float64 slope;
float64 absslope;
float64 exponent;
float64 exponent2;
float64 input[129];
float64 result[129];

test_range;
tbl_range;

/*
* First calculate the mid point of the range of values from the min and max
* input values. The offset is the center of the range of min and max
*inputs. The purpose of the offset is to permit calculating the tables
* based upon a relative centering about the X axis. The offset simply
* permits the run-time code to send the corrected X values assuming
* the tables were built symetrically around X=0.
*/

center = min_input + (max_input - min_input) / 2.0F;

*offset = center;

temp_range = max_input - center;

test_range = (temp_range < 0.0)? -temp_range : temp_range;
/*
* Now calculate the closest binary representation of the test_range such
* that the new binary value is equal to or greater than the calculated
* test_range. Start with the lowest range(1/27128) and step up until the
* new binary range is equal or greater than the test_range.

*/
tbl_range = two_to_the_N(128); [* 2728 *|
tbl_range = 1.0/tbl_range;
while (test_range > thl_range)
{
tbl_range *= 2;
}
*range = tbl_range;
Xofst = 157; [* exponent bias for DSP calculations */
/*

* Now divide the full range of the table into 128 segments (129 points)

* scanning first the positive side of the X-axis and then the negative

* side of the X-axis.

*

* Note that 129 points are calculated in order to generate a line segment
* for calculating slope.

*

* Also note that the entire binary range is built to include the min

Appendix G

Example Program Listings

415

* and max values entered as min_input and max_input.
*/

for (ii=0 ; ii<=64 ; ii++) /* 0 to +FS */
{
input[ii] = center + ((tbl_range/64.0)*(float64)ii);
result[ii] = (*custom_function)(input[ii]);

if (ii == 0) continue; /* This is the first point - skip slope */

j= 64 +ii-1; [* generate numbers for prev segment */
[* for second and subsequent points */
t = resultfii-1]; [* using prev seg base */

if (t< 0.0) t *=-1.0; /* use abs value (magnitude) of t */

/* compute the exponent of the offset (B is 31 bits) */

if (t!=0.0)

{ /* don'’t take log of zero */

exponent = 31.0 - (log10(t)/log10(2.0));/* take log base 2 */
}

else

{

exponent = 100.0;

}

[* compute slope in bits (each table entry represents 512 bits) */
slope = (resultii] - result[ii-1]) / 512.0;

/* don't take the log of a negative slope */
absslope = (slope < 0)? -slope : slope;

[* compute the exponent of the slope (M is 16 bits) */
if (absslope '=0)

{

exponent2 = 15.0 -(log10(absslope)/log10(2.0));

}
else

{

exponent2 = 100.0;

}

[* Choose the smallest exponent -- maximize resolution */
if (exponent2 < exponent) exponent = exponent2;

Xfactor = (int32)(exponent);

if (t!1=0)
{
int32 Itemp = round32f(log10(t)/logl0(2.0));
if ((Xfactor + ltemp) > 30)
E(factor =30 - Itemp;
}
}

Mfactor = round32f(two_to_the_N(Xfactor)*slope);
if (Mfactor == 32768)

{

416

Example Program Listings

Appendix G

/* There is an endpoint problem. Re-compute if on endpoint */

Xfactor--;
Mfactor =round32f(two_to_the_N(Xfactor)*slope);
}
if ((Mfactor<=32767) && (Mfactor>=-32768))
{

/* only save if M is within limits */

/* Adjust EX to match runtime.asm */

EX[jj] = (uintl6)(Xofst - Xfactor);

M[jj] = (uintl6)(Mfactor & OXFFFF); /* remove leading 1's*/
B = round32f(two_to_the_N(Xfactor)*result[ii-1]);

Bhigh[jj] = (uint16)((B >> 16) & 0X0000FFFF);

Blow[jj] = (uint16)(B & OXO000FFFF);

}
} * end for */

for (ii=0 ; ii<=64 ; ii++) /* 0 to -FS */
{
input[ii] = center - ((tbl_range/64.0)*(float64)(ii));
result[ii] = (*custom_function)(input[ii]);

if (ii == 0) continue; /* This is the first point - skip slope */

j=ii-1; [* generate numbers for prev segment */
/* for second and subsequent points */
t =resultfii-1]; /* using prev seg base */
if (t< 0.0) t *=-1.0; /* use abs value (magnitude) of t */

/* compute the exponent of the offset (B is 31 bits) */
if (t=0.0)
{ [* don't take log of zero */
exponent = 31.0 - (log10(t)/log10(2.0));/* take log base 2 */
}

else

{
exponent = 100.0;

}

[* compute slope in bits (each table entry represents 512 hits) */
slope = (result[ii] - result[ii-1]) / 512.0;

[* don't take the log of a negative slope */
absslope = (slope < 0)? -slope : slope;

/* compute the exponent of the slope (M is 16 hits) */
if (absslope 1=0)

{

exponent2 = 15.0 -(log10(absslope)/log10(2.0));

}

else

{
exponent2 = 100.0;

}

/* Choose the smallest exponent -- maximize resolution */
if (exponent2 < exponent) exponent = exponent2;

Xfactor = (int32)(exponent);

Appendix G

Example Program Listings

417

if (t!1=0)
{
int32 Itemp = round32f(log10(t)/log10(2.0));
if ((Xfactor + Itemp) > 30)
E(factor =30 - Itemp;
}
}

Mfactor = round32f(two_to_the_N(Xfactor)*slope);
if (Mfactor == 32768)
{
/* There is an endpoint problem. Re-compute if on endpoint */
Xfactor--;
Mfactor =round32f(two_to_the_N(Xfactor)*slope);
}
if ((Mfactor<=32767) && (Mfactor>= -32768))
{
[* only save if M is within limits */
/* Adjust EX to match runtime.asm */
EX[jj] = (uint16)(Xofst - Xfactor);
M[jji] = (uintl6)(Mfactor & OXFFFF); /* remove leading 1's*/
B = round32f(two_to_the_N(Xfactor)*result[ii-1]);
Bhigh[jj] = (uint16)((B >> 16) & 0x0000FFFF);
Blow[jj] = (uint16)(B & OxO000FFFF);
}
} /* end for */
/*
* Build actual tables for downloading into the E1415 memory.
*/
for (ii=0 ; ii<128 ; ii++)
{ [* copy 64 sets of coefficents */
conv_arraylii*4] = Mii];
conv_arraylii*4+1] = EX]ii];
conv_array[ii*4+2] = Bhighlii];
conv_array[ii*4+3] = Blowfii];
/*
printf("%d %d %d %d %d\n",ii,M[ii],EX[ii],Bhighlii],Blow[ii]);
*/
}

return;

}

/* Main program */
ARGSUSED/ /* Keeps lint happy */
int main(int argc, char *argv[])
{
/* Main program local variable declarations */
char *algorithm; /* Algorithm string */
int alg_num; /* Algorithm number being loaded */
char string[333]; /* Holds error information */
int32 error; [* Holds error number */

#if0 [* Setto 1 if reading algorithm files */
/* Check pass parameters */
if (argc < 2) || (argc > 33)){ /* Must have 1 to 32 algorithms */
usage(argv[0]);

418 Example Program Listings Appendix G

exit(1);

}
#endif

INST_STARTUP(); /* Initialize the C-SCPI routines */
#f0 [* Set to 1 to open interface session */

/* If you need to open a VXI device session, here’s how to do it. You need
* a VXI device session if the V382 is to source or respond to VXI
* backplane triggers (SICL ixtrig or ionintr calls).
*/
if (! (vxi = iopen("vxi"))) {
(void) fprintf(stderr, "SICL error: failed to open vxi interface.\n");
(void) fprintf(stderr, "SICL error %d: %s\n",
igeterrno(), igeterrstr(igeterrno()));
exit(1);
}
#endif

/* Open the E1415 device session with error checking. Copy and modify
* these lines if you need to open other instruments.
*/
INST_OPEN(e1415, E1415_ADDR); /* Open the E1415 */
if (1 e1415) { /* Did it open? */
(void) fprintf(stderr, "Failed to open the E1415 at address %s\n",
E1415 ADDRY);
(void) fprintf(stderr, "C-SCPI open error was %d\n", cscpi_open_error);
(void) fprintf(stderr, "SICL error was %d: %s\n",
igeterrno(), igeterrstr(igeterrno()));
exit(1);
}
/* Check for startup errors */
INST_QUERY(e1415,"syst:err?\n", "%d,%S", &error, string);
if (error) {
(void) printf("syst:err %d,%s\n", error, string);
exit(1);
}

/* Usually, you'll want to start from a known instrument state. The
* following provides this.

*/

INST_CLEAR(e1415); [* Selected device clear */
INST_SEND(e1415, "*RST;*CLS\n");

#if O /* Set to 1 to do self test */
/* Does the E1415 pass self-test? */
{
int test_result; /* Result of E1415 self-test */
test_result = -1; /* Make sure it gets assigned */

INST_QUERY(e1415, "*TST?\n", "%d", &test_result);
if (test_result) {
(void) fprintf(stderr, "E1415A failed self-test\n");
exit(1);
}

Appendix G

Example Program Listings

419

}
#endif

/* Setup SCP functions */
INST_SEND(el1415, "sens:func:volt (@116)\n"); /* Analog in volts */
INST_SEND(e1415, "sour:func:cond (@141)\n"); /* Digital output */

#if 0 /* Set to 1 to do calibration */
/* Perform Calibrate, if necessary */
{
int cal_result; /* Result of E1415 self-test */
cal_result = -1; /* Make sure it gets assigned */

INST_QUERY(e1415, "™CAL?\n", "%d", &cal_result);

if (cal_result) {
(void) fprintf(stderr, "E1415A failed calibration\n");
(void) fprintf(stderr, "Check FIFO for channel errors\n");
exit(1);

}

}
#endif

/* Configure Trigger Subsystem and Data Format */

INST_SEND(e1415, "trig:sour timer;:trig:timer .001\n");
INST_SEND(e1415, "samp:timer 10e-6\n"); /* default */
INST_SEND(e1415, "form real,32\n");

/* Download Globals */
/* INST_SEND(e1415, "alg:def 'globals’,'static float x;\n"); */

/* Download Custom Function */

{
float64 maxInput; [* set to maximum expected input*/
float64 mininput; /* set to minimum expected input*/
float64 tableOffset; [* offset used in building table*/
uintlé coef_array[512]; /* 512 elements */
float64 tableRange; /* Range on which table was built*/

maxinput = 2;

minlnput = -2;

Build_table(maxInput, mininput, my_function, &tableRange,
&tableOffset, coef_array);

/* Download the table range and the table array to the card ~ */
[* Piecewise requires 128 sets of table values */

INST_SEND(el1415,"ALGorithm:FUNCtion:DEFine 'sin’,%f,%f,%1024b",
tableRange, tableOffset, coef_array);

/* Download algorithms */
#f 0 /* Set to 1 if algorithms passed in as files */
/* Get an algorithm(s) from the passed filename(s). We assign sequential
* algorithm numbers to each successive file name: ALG1, ALG2, etc. when

420 Example Program Listings

Appendix G

* you execute this program as "<progname> lang1 lang2 lang3 ..."
*/

alg_num =1, [* Starting algorithm number */

while (argc > alg_num) {

algorithm = get_algorithm(argv[alg_num]); /* Read the algorithm */

[* Define the algorithm */
{
char alg[6]; [* Temporary algorithm name */
(void) sprintf(alg, "ALG%d", alg_num);
INST_SEND(e1415, "alg:def %S,%*B\n", alg,
strlen(algorithm) + 1, algorithm);

[* Check for algorithm errors */
INST_QUERY(e1415,"syst:err?\n", "%d,%S", &error, string);
if (error) {
(void) printf("While loading file %s, syst:err %d,%s\n",
argv[alg_num], error, string);

exit(1);
}
}
[* Free the malloc’ed memory */
free(algorithm);
alg_num-++; /* Next algorithm */

}

(void) printf("All %d algorithm(s) loaded without errors\n\n", alg_num-1);

#else [* Download algorithm with in-line code */

algorithm =" \n"

"I* Example algorithm uses Custom Functions.\n"

" * This algorithms generates a triangle and\n"

" * sine wave signal to separate current outputs.\n"

-

"

" static float inc = .1, x=0, gain=2*1.57;\n"

"if (x> 1.57) inc = -inc;\n"

"if (x <-1.57) inc = abs(inc);\n"

"X =x+inc\n"

" 0100 = x * (.001); \n"

" 0101 = gain * sin(x) * (.001);\n"

"\n";

INST_SEND(el1415, "alg:def '"ALG1’,%*B\n", strlen(algorithm) + 1, algorithm);

#endif

/* Preset Algorithm variables */
/* Initiate Trigger System - start scanning and running algorithms */
INST_SEND(e1415,"init\n");
[* This example shows no data retrieval. */
#if 1 /* Setto 1 if using User interactive commands to E1415 */

/* Call this function if you want to be able to type SCPI commands and
* see their responses. NOTE: switch to FORM,ASC to retrieve

Appendix G

Example Program Listings

421

* ASCII numbers during interactive mode.

*/
INST_SEND(e1415,"form asc\n");
do_interactive(); [* Calls cscpi_exe() in a loop */
#endif
#if 0

/* C-CSPI way to check for errors */
INST_QUERY(e1415,"syst:err\n", "%d,%S", &error, string);

if (error) {
(void) printf("syst:err %d,%s\n", error, string);
exit(1);
}
#endif
return O; /* Normal end of program */

}

422 Example Program Listings Appendix G

Index

HP E1415A Algorithmic Closed Loop Controller

Symbols

(ALG_NUM), determining your algorithms
identity, 121

(FIFO mode BLOCK), continuously reading the
FIFO, 89

(FIFO mode OVER), reading the latest FIFO
vaues, 90

(First_loop), determining first execution, 119

(FM), fixed width pulses at variable frequency, 75

(FM), variable frequency square-wave output, 75

(Important!), performing channel calibration, 75

(PWM), variable width pulses at fixed frequency, 74

*CAL?, how to use, 76

*RST, default settings, 59

Numerics
4-20 mA, adding sense circuitsfor, 47

A

A common error to avoid, 123
A complete thermocouple measurement command
sequence, 70

A quick-start PID algorithm example, 92

A very simple first algorithm, 128

Abbreviated Commands, 158

ABORt subsystem, 164

abs(expression), 140

Access, hitfield, 142

Accessing I/O channels, 118

Accessing the E1415sresources, 117

Accessories
Rack Mount Termina Panel, 52

Accuracy Graph
Reference RTD, 325
Reference Thermistor 5K Ohm Type, 323-

324

RTD, 326-327
Thermistor 10K Ohm Type, 332-333
Thermistor 2250 Ohm Type, 328-329
Thermistor 5K Ohm Type, 330-331
Thermocouple Type E (0-800C), 310-311
Thermocouple Type E (-200-800C), 308-309
Thermocouple Type EExtended, 312-313
Thermocouple Type J, 314-315
Thermocouple Type K, 316

Thermocouple Type R, 317-318

Thermocouple Type S, 319-320

Thermocouple Type T, 321-322
Adding settling delay for specific channels, 112
Adding terminal module components, 47
Additive-expression, 144
Additive-operator, 144
ADDRess

MEMory:VME:ADDRess, 216
ADDRess?

MEMory:VME:ADDRess?, 217
Alarm Limits, 78
ALG

:DEFINE in the programming sequence, 125
ALG:DEFINE’s three data formatd25
Algorithm

avery smplefirst, 128

data acquisition, 133

deleting, (*RST), 291

exiting the, 140

modifying a standard PID, 129

process monitoring, 133

running the, 129

starting the PID, 85

the pre-defined PIDA, 77

the pre-defined PIDB, 77

what isacustom ?, 114

writing the, 129
Algorithm execution orderl23
Algorithm Language referencé37
Algorithm language statement

writecvt(), 120

writefifo(), 121
Algorithm subsystem165
Algorithm to algorithm communicatioriLl30
ALGorithm:DEFine, defining a PID with79
ALGorithm:FUNCtion:DEFine 176
ALGorithm:OUTPut:DELay 177
ALGorithm:OUTPut:DELay?178
ALGorithm:UPDate:CHANnNel 179
ALGorithm:UPDate:WINDow 180
ALGorithm:UPDate:WINDow? 181
ALGorithm:UPDate[:IMMediate] 178
ALGorithm[:EXPLicit:ARRay, 166
ALGorithm[:EXPLicit:ARRay? 167

Index 423

AL Gorithm[:EXPLicit]:DEFine, 167
ALGorithm[:EXPLicit]:SCALar, 171
AL Gorithm[:EXPLicit]:SCALar?, 172
AL Gorithm[:EXPLicit]:SCAN:RATio, 172
AL Gorithm[:EXPLicit]:SCAN:RATIi0?, 173
AL Gorithm[:EXPLicit]:SIZE?, 173
ALGorithm[:EXPLicit]:TIME?, 175
ALGorithm[:EXPLicit][:STATe], 174
AL Gorithm[:EXPLicit][:STATe]?, 175
Algorithm-definition, 146
Algorithms
defining custom, 125
defining standard PID, 77
disabling, 91
enabling, 91
INITiating/Running, 85
non-control, 133
ALL?
SENSe:DATA:FIFO[:ALL]? 237
AMPLitude
OUTPut: CURRent: AMPLitude, 220
OUTPut: CURRent: AMPLitude? 221
An example using the operation group, 98
APERture
SENSe:FREQuency:APERture, 241
SENSe:FREQuency:APERture?, 242
Arithmetic operators, 139
Arm and trigger sources, 82
ARM subsystem, 182
ARM:SOURce, 183
ARM:SOURce?, 184
ARRay
ALGorithm[:EXPLicit]:ARRay, 166
ALGorithm[:EXPLicit]:ARRay?, 167
Assigning values, 147
Assignment operator, 139
Attaching and removing the terminal module, 45
Attaching the HP E1415 terminal module, 45
Attaching the terminal module, 43
Auto range, overflow readings, 199
Autoranging, more on, 109

B
Bitfield access, 142
Bit-number, 144
Byte, enabling events to be reported in the status, 98
Byte, reading the status, 99

C
CAL

TARE and thermocouples, 106

TARE, resetting, 107
CALibration subsystem, 185
Cdlibration, channel, * CAL?, 287
Cdlibration, control of, 25
CALibration:CONFigure:RESistance, 186
CALibration:CONFigure:Voltage, 187
CALibration:SETup, 188
CALibration:SETup?, 188
CALibration:STORe, 189
CALibration:TARE, 190
CALibration:TARE:RESet, 191
CALibration:TARE?, 192
CALibration:VALue:RESistance, 192
CALibration:VALueVOLTage, 193
CALibration:ZERO?, 194
Calling user defined functions, 122
Capability, maximum tare, 107
CAUTIONS

Lossof processcontrol by algorithm, 164,174
Changing an algorithm while it's runnind26
Changing gains107
Changing gains or filtersl07
Changing timer interval while scanning84
CHANDnel

ALGorithm:UPDate:CHANnNel, 179
Channel calibration, *CAL?287
Channel identifiers, communication usirig30
CHANnels

SENSe:REFerence:CHANnNels, 254
Channels

accessing 1/0O, 118

adding settling delay for specific, 112

defined input, 118

input, 118

output, 62, 71,118

setting up analog input, 62

setting up digital input, 71

specia identifiersfor, 139
Characteristics, settlind.10
Checking for problemsl10
CHECksum?

DIAGnhostic:CHECKsum?, 197
Clearing event registerd 01
Clearing the enable registed00
Clipping limits, 78
Coefficients 90
Command

424 Index

Abbreviated, 158

Implied, 159

Linking, 161

Separator, 158
Command Quick Reference, 297
Command Reference, Common

*CAL?, 287

*CLS, 288

*DMC, 288

*EMC, 288

*EMC?, 288

*ESE?, 289

*ESR?, 289

*IDN?, 289

*LMC? 290

*OPC, 290

*OPC?, 290

*PMC, 290

*RMC, 291

*RST, 291

*SRE, 292

*SRE?, 292

*STB?, 292

*TRG, 292

*TST? 293

*WAI, 296
Command Reference, SCPI, 163
Command sequences, defined, 27
Commands

FIFO status, 89

FIFO transfer, 88
Comment lines, 150
Comments, 147
Common Command Format, 158
Common mode

noise, 364

rejection specification, 306

voltage limits, 363
Communication

agorithm to algorithm, 130

using channdl identifiers, 130

using global variables, 131
Comparison operators, 139
Compensating for system offsets, 106
Compensation, thermocouple reference

temperature, 68

Components, adding terminal module, 47
Compound-statement, 146

CONDition
SENSe:FUNCtion:CONDition, 242
SOURce:FUNCI:SHAPe]:CONDition, 262
STATus.OPERation: CONDition?, 269
STATus.QUEStionable:CONDition?, 274
Conditional constructs, 140
Conditional execution, 148
Configuring
programmable analog SCP parameters, 62
the enable registers, 98
the HP E1415, 19
the transition filters, 98
Connecting the on-board thermistor, 42
Connection
Guard, 363
recommended, 39
signalsto channels, 39
Connectors, pin-signa lists, 53
Considerations, special, 107
Constant
decimal, 143
hexadecimal, 143
octal, 143
Constructs, conditional, 140
Continuous Mode, 284
Continuously reading the FIFO (FIFO mode
BLOCK), 89
Control
implementing feed forward, 131
implementing multivariable, 130
manual, 78
PIDA with digital on-off, 129
program flow, 140
Controller, describing the HP E1415 closed loop, 114
Controller, overview of the HP E1415 algorithmic
loop, 56
Conversion
EU, 344
Conversions
custom EU, 71
custom reference temperature EU, 104
custom thermocouple EU, 103
linking channelsto EU, 64
loading tables for linear, 104
loading tables for non linear, 105
Cooling Requirements, specifications, 305
COUNTt?
SENSe:DATA:FIFO:COUNt? 238
Counter, setting the trigger, 84

Index 425

Creating and loading custom EU conversion
tables, 103
Creating EU conversion tables, 104
Crimp-and-Insert
accessories, 50
option A3E, 49
CTYPe?
SYSTem:CTYPe? 279
Current Value Table
SENSe:DATA:CVTable?, 235
CUSTom
SENSe:FUNCtion:CUSTom, 243
Custom
EU conversion tables, creating, 103
EU conversion tables, loading, 103
EU conversions, 71
EU operation, 103
EU tables, 103
what is a custom algorithm?, 114
Custom reference temperature EU conversions, 104
Custom thermocouple EU conversions, 103
CVvT
elements, reading, 120
elements, writing value to, 120
organization of the, 87
reading algorithm values from the, 87
Resetting the CVT, 88
sending datato, 120
SENSe:DATA:CVTable? 235

D

DATA
FORMat:DATA, 206
FORMat:DATA?, 207

Data
acquisition algorithm, 133
structures, 141
types, 140

Decimal constant, 143

Declaration, 146

Declaration initialization, 142

Declarations, 146

Declarator, 145

Declaring variables, 147

Default settings, power-on, 59

DEFine
ALGorithm:FUNCtion:DEFine, 176
ALGorithm[:EXPLicit]:DEFine, 167
ROUTe:SEQuence:DEFine?, 229

Defined input and output channels, 118

Defining

aPID with ALG:DEFINE, 79

an algorithm for swapping, 126

and accessing global variables, 119

custom algorithms, 125

data storage, 81

standard PID algorithms, 77
Definite length block data example, 126
DELay

ALGorithm:OQUTPu:DELay?, 178

ALGorithm:OQUTPut:DELay, 177
Describing the HP E1415 closed loop controller, 114
Detecting open transducers, 108
Determining

an algorithm’s sizel27

first execution (First_loop)119

model number, SCPI programmijriz89

your algorithms identity (ALG_NUM)121
DIAGnostic:CALibration:SETup[:MODE], 195
DIAGnostic:CALibration:SETup[:MODE]?, 196
DIAGnostic:CALibration:TAReeMODE?, 197
DIAGnhostic:CALibration: TARe[: OTDetect]

:MODE, 196
DIAGnostic:CHECKsum?, 197
DIAGnostic:CUSTom:LINear, 197
DIAGnhostic:CUSTom:PIECewise, 198
DIAGnostic:CUSTum:REFerence

:TEMPerature 199
DIAGnostic:FLOor:DUMP?, 200
DIAGnostic:FLOor[:CONFigure], 199
DIAGnostic:lEEE, 200
DIAGnostic:lEEE?, 201
DIAGnostic:INTerrupt:LINe, 201
DIAGnostic:INTerrupt:LINe?, 201
DIAGnostic:OTDectect[:STATe], 202
DIAGnostic:OTDectect[:STATe]?, 202
DIAGnostic:OTDetect[:STATe], 109
DIAGnostic:QUERY:SCPREAD, 203
DIAGnostic:VERSion?, 203
Directly, reading status groups, 100
Disabling

flash memory access (optiona2b

the input protect feature (optionaB5
Drivers, instrument, 27
DSP, 344
DUMP?

DIAGnostic:FLOor:DUMP? 200

426 Index

E
ENABIle
STATus.OPERation:ENABIe, 270
STATus.OPERation:ENABIe?, 271
STATus.QUEStionableeENABIe, 275
STATus.QUEStionableeENABI€e? 275
Enabling and disabling algorithms, 91
Enabling events to be reported in the status byte, 98
Environment, the algorithm execution, 115
Equality-expression, 145
Equality-operator, 145
Error Messages, 335
Self Test, 338
ERRor?
SY STem:ERRor?, 279
EU Conversion, 344
EVENt?
STATus.OPERation:EVENLt?, 271
STATus.QUEStionableEVENTt?, 276
Example
A quick-start PID algorithm, 92
command sequence, 92
definite length block data, 126
indefinite length block data, 126
language usage, 115
operation status group, 99
programs, about, 27
guestionabl e data status group, 98
standard event status group, 99
Example programs (V XIplug& play). See online help.
EXCitation
SENSe:STRain:EXCitation, 255
SENSe:STRain:EXCitation?, 256
Executing the programming model, 58
Execution, conditional, 148
Exiting the algorithm, 140
Expression, 145
Expression-statement, 146
External Trigger Input, specifications, 305

F
Faceplate connector pin-signal lists, 53
FIFO
reading history mode values from the, 88
reading values from the, 88, 121
sending datato, 120
status commands, 89
time relationship of readingsin the FIFO, 121
transfer commands, 88

writing values to, 121
Filters
adding circuits to terminal module, 47
configuring the status transition filters, 98
Fixed width pulses at variable frequency (FM), 75
Fixing the problem, 111
Flash Memory, 344
Flash memory access, disabling, 25
Flash memory limited lifetime, 189
FLOor
DIAGnhostic:FLOor[:CONFigure], 199
FM:STATe
SOURce:FM:STATe, 261
SOURce:FM:STATe?, 262
Format
Common Command, 158
SCPI Command, 158
specifying the data format, 81
FORMat:DATA, 206
FORMat:DATA?, 207
Formats
ALG:DEFINE’s three data format425
FREQuency
INPut:FILTer[:LPASs]:FREQuency10
INPut:FILTer[:LPASs]:FREQuency211
SENSe:FUNCtion:FREQuencg246
Frequency
function 72
setting algorithm execution frequen&i
setting filter cutoff 62
Function
calling a user defined.22
frequency 72
setting input 72
static state (CONDition)/2 74
the main 115
totalizer 72
Function reference (VXIplug& play). See online help.
Functions, 140
linking output channels 11
setting output74
Functions and statements, intrinsic
abs(expressionll40
interrupt() 121 140
max(expressionl,expression2)0
min(expressionl,expression2)0
writeboth(expression,cvt_elementy0
writecvt(expression,cvt_elemenf)20 140
writefifo(expression)121 140

Index 427

G
GAIN
INPut:GAIN, 212
INPut:GAIN?, 213
Gain, channel, 287
Gains, setting SCP, 62
GFACtor
SENSe:STRain:GFACtor, 256
SENSe:STRain:GFACtor?, 256
Global variables, 143
accessing, 119
defining, 119
Glossary, 343
Graph
Reference RTD Accuracy Graph, 325
Reference Thermistor Accuracy Graph 5K
Ohm Type, 323-324
RTD Accuracy, 326-327
Thermistor Accuracy Graph 10K Ohm
Type, 332-333
Thermistor Accuracy Graph 2250 Ohm
Type, 328-329
Thermistor Accuracy Graph 5K Ohm
Type, 330-331
Thermocouple Accuracy Graph Type E (0-
800C), 311
Thermocouple Accuracy Graph Type
EExtended, 312-313
Thermocouple Accuracy Graph Type J, 314-
315
Thermocouple Accuracy Graph Type K, 316
Thermocouple Accuracy Graph Type R, 317-
318
Thermocouple Accuracy Graph Type S, 319-
320
Thermocouple Accuracy Graph Type T, 321-
322
Thermocouple Accuracy, Type E (-200-
800C), 309
Grounding, noise due to inadequate, 363
Group, an example using the operation, 98
Guard connections, 363

H
HALF?
SENSe:DATA:FIFO:COUNt:HALF? 238
SENSeDATA:FIFO:HALF?, 238
Hexadecimal constant, 143
HINTS

for quiet measurements, 39
Read chapter 3 before chapter 4, 113
History mode, 79
How to use*CAL?, 76
HP E1415 background operation, 101
HP E1415, configuring the, 19

I
Identifier, 143
Identifiers, 138
|[EEE +/- INF, 207
IMMediate
ALGorithm:UPDate[:IMMediate], 178
ARM[:IMMediate], 183
INITiate[:IMMediate], 209
TRIGger[:IMMediate], 283
Implementing
feed forward control, 131
multivariable control, 130
setpoint profiles, 134
Implied Commands, 159
IMPORTANT!
Do use CAL:TARE for copper TC
wiring, 106
Don’t use CAL:TARE for thermocouple
wiring, 106
Making low-noise measuremens
Resolving programming problems9
Indefinite length block data example, 126
INF, IEEE, 207
Init-declarator, 145
Init-declarator-list, 145
Initialization, declaration, 142
Initializing variables, 120
INITiate subsystem, 209
INITiate[:IMMediate], 209
INITiating/Running algorithms, 85
Input channels, 118
Input impedance specification, 306
Input protect feature, disabling, 25
INPut subsystem, 210
INPut:FILTer[:LPASs]:FREQuency, 210
INPut:FILTer[:LPASs]:FREQuency?, 211
INPut:FIL Ter[:LPASS|[:STATe], 211
INPut:FIL Ter[;LPASs|[:STATe]?, 212
INPut:GAIN, 212
INPut: GAIN?, 213
INPut:LOW, 213
INPut:LOW?, 214
INPut:POLarity, 214

428 Index

INPut:POLarity?, 215

Inputs, setting up digital, 71

Installing signal conditioning plug-ons, 21

Instrument drivers, 27

Interrupt function, 121

Interrupt level, setting NOTE, 19

interrupt(), 121, 140

Interrupts
updating the status system, 101
VXI, 101

Intrinsic functions and statements
abs(expression), 140
interrupt(), 121, 140
max(expressionl,expression2), 140
min(expressionl,expression2), 140
writeboth(expression,cvt_element), 140
writecvt(expression,cvt_element), 120, 140
writefifo(expression), 121, 140

Intrinsic-statement, 146

| sothermal reference measurement, NOTE, 34

K

Keywords
special HP E1415 reserved, 138
standard reserved, 138

L
Language syntax summary, 143
Language, overview of the algorithm, 114
Layout
Terminal Module, 35
Lifetime limitation, Flash memory, 189
Limits
aarm, 78
clipping, 78
Common mode voltage, 363
LINe
DIAGnhostic:INTerrupt:LINe, 201
DIAGnhostic:INTerrupt:LINe?, 201
Lines, comment, 150
Linking
channelsto EU conversion, 64
commands, 161
output channels to functions, 71
resistance measurements, 65
strain measurements, 70
temperature measurements, 67
voltage measurements, 65
Lists
Faceplate connector pin-signal, 53

Loading
custom EU tables, 104
tables for linear conversions, 104
tables for non linear conversions, 105
Logical operators, 139
Logical-AND-expression, 145
LOW
INPut:LOW, 213
INPut:LOW?, 214
L ow-noise measurements
HINTS, 39
IMPORTANT!, 34

M

Manual control, 78
max(expressionl,expression2), 140
Maximum

common mode voltage specification, 306

input voltage, specifications, 306

tare cal. offset specification, 306

tare capability, 107

Update Rate, specifications, 305
Measurement accuracy DC Volts specification, 306
Measurement Ranges, specifications, 305
M easurements

linking resistance, 65

linking strain, 70

linking temperature, 67

linking voltage, 65

reference measurement before

thermocouple measurements, 69

terminal block considerationsfor TC, 38

thermocouple, 68
Measuring the reference temperature, 69
MEMory:VME:ADDRess, 216
MEMory:VME:ADDRess?, 217
MEMory:VME:SIZE, 217
MEMory:VME:SIZE?, 218
MEMory:VME:STATe, 218
MEMory:VME:STATe?, 219
Messages, error, 335
min(expressionl,expression2), 140
MODE

SENSe:DATA:FIFO:MODE, 239

SENSe:TOTaizeeRESe:MODE, 259
Mode

history, 79

selecting the FIFO, 81

which FIFO mode?, 89

Index 429

MODE?
SENSe:DATA:FIFO:MODE?, 240
SENSe:TOTaizeeRESe:MODE?, 259
Model
executing the programming, 58
the programming, 57
Model number, determining with SCPI
programming, 289
Modifier, the static, 141
Modifying
astandard PID algorithm, 129
running algorithm variables, 90
the standard PIDA algorithm, 130
the terminal module circuit, 47
Module
Cooling Requirements, specifications, 305
Power Available for SCPs,
specifications, 305
Power Requirements, specifications, 305
SCPsand Terminal, 35
Terminal, 35
More on auto ranging, 109
Multiplicative-expression, 144
Multiplicative-operator, 144

N

NaN, 207

Next, whereto go, 151

Noise
Common mode, 364
due to inadequate grounding, 363
Normal mode, 364
reduction with amplifier SCPs, NOTE, 111
reduction, wiring techniques, 362
rejection, 364

Noisy measurements
Quieting, 34,39

Non-Control algorithms, 133

Normal mode noise, 364

Not-a-Number, 207

NOTES
*CAL?and CAL:TARE turn off then on

OTD, 202
*RST effect on custom EU tables, 103
*TST? sets default ASC,7 data format, 207
+ & - overvoltage return format from
FIFO, 237,239,241

ALG:SCAN:RATIO vs. ALG:UPD, 172
ALG:SIZE? return for undefined

agorithm, 173

ALG:STATE effective after
ALG:UPDATE, 91

ALG:STATE effective only after
ALG:UPD, 174

ALG:TIME? return for undefined
agorithm, 175

Algorithm Language case sensitivity, 139

Algorithm Language reserved keywords, 138

Algorithm source string terminated with
null, 125

Algorithm source string terminates with
null, 169

Algorithm Swapping restrictions, 128

Algorithm variable declaration and
assignment, 119

Amplifier SCPs can reduce measurement
noise, 111

BASIC’s vs. 'C’s is equal to symbol47

Bitfield access C'’ vs.
AlgorithmLanguagel142

Cannot declare channel ID as varialdla9

Combining SCPI command$62

CVT contents after *RST88, 236

Decimal constants can be floating or
integer 143

Default (*RST) Engineering Conversiods

Define user function before algorithm
calls 122

Do not CAL:TARE thermocouple
wiring, 190

Do use CAL:TARE for copper in TC
wiring, 106

Do use CAL:TARE for copper TC
wiring, 190

Don’t use CAL:TARE for thermocouple
wiring, 106

Flash memory limited lifetimel07, 189

Isothermal reference measuremeBis

MEM subsystem vs. command module
mode| 216

MEM subsystem vs. TRIG and INIT
sequence216

MEM system vs TRIG and INIT
sequence205

Memory required by an algorithmi27

Number of updates vs.
ALG:UPD:WINDOW, 166171 181

430 Index

Open transducer detect restrictions, 109
OUTP.CURR:AMPL command, 64
OUTP:VOLT:AMPL command, 64
OUTPut: CURRent:AMPLitudefor resistance
measurements, 220
PID definition errors and channel
specifiers, 80
Reference to noise reduction literature, 363
Resi stance temperature measurements, 67
Saving time when doing channel
calibration, 76
Selecting manual range vs. SCP gains, 65
Setting the interrupt level, 19
Settings conflict, ARM:SOUR vs
TRIG:SOUR, 182,284
Thermocouple reference temperature
usage, 252, 255
TRIGger:SOURce vs. ARM:SOURce, 83-84
Warmup before executing * TST?, 338
When agorithm variables are initialized, 143
NTRansition
STATus.OPERation:NTRansition, 271
STATus.OPERation:NTRansition?, 272
STATus.QUEStionable:NTRansition, 276
STATus.QUEStionableNTRansition?, 277

@)
Octal constant, 143
Offset

A/D, 188,287

channel, 188, 287
Offsets

compensating for system offsets, 106
residual sensor, 106
system wiring, 106
On-board Current Source specification, 306
Operating sequence, 122
Operation, 75, 106
Operation and restrictions, 75
Operation status group examples, 99
Operation, custom EU, 103
Operation, HP E1415 background, 101
Operation, standard EU, 103
Operational overview, 56
Operators
arithmetic, 139
assignment, 139
comparison, 139
logical, 139

the arithmetic, 148

the comparison, 148

thelogical, 148

unary, 139

unary arithmetic, 148

unary logical, 139
Option A3F, 51
Options

Terminal module, 49
Order, algorithm execution, 123
Organization of the CVT, 87
OTD restrictions, NOTE, 109
OTDetect, DIAGnostic

OTDetect, 109
Output channels, 118
OUTPut subsystem, 220
OUTPut: CURRent:AMPLitude, 220
OUTPut: CURRent:AMPLitude?, 221
OUTPut:CURRent:STATe, 222
OUTPut: CURRent:STATe?, 222
OUTPut:POL arity, 223
OUTPut:POL arity?, 223
OUTPut:SHUNt, 223
OUTPut:SHUNLt?, 224
OUTPUt: TTLTrg:SOURce, 224
OUTPut: TTLTrg:SOURce?, 225
OUTPUt: TTLTrg[:STATe], 226
OUTPut: TTLTrg[:STATE]?, 226
OUTPuUt:TYPE, 226
OUTPUt:TYPE?, 227
OUTPut:VOLTage:AMPLitude, 227
OUTPut:VOLTage:AMPLitude?, 228
Outputs, setting up digital, 73
Outputting trigger signals, 85
Overall program structure, 150
Overall sequence, 122
Overflow readings while auto ranging, 199
Overloads, unexpected channel, 108
Overview

of the algorithm language, 114

of the HP E1415 algorithmic loop

controller, 56
operational, 56

P

Parameter data and returned value types, 162
Parameters, configuring programmable analog
SCP, 62
PART?
SENSe:DATA:FIFO:PART?, 240
Performing channel calibration (Important!), 75

Index 431

PERiod
SOURce:PUL Se:PERIod, 264
SOURce:PUL Se:PERiod?, 264
PID algorithm tuning, 95
PIDA with digital on-off control, 129
PIDA, modifying the standard, 130
Pin-out, connector pin-signal lists, 53
Planning
grouping channelsto signal conditioning, 31
planning wiring layout, 31
sense vs. output SCPs, 33
thermocouple wiring, 34
Plug& Play. See online help.
Plug-ons, installing signal conditioning, 21
Points
ROUTe:SEQuence:POINts?, 230
POISson
SENSe:STRain:POI Sson, 257
SENSe:STRain:POI Sson?, 257
POL arity
INPut:POL arity, 214
INPut:POL arity?, 215
OUTPut:POL arity, 223
OUTPut:POL arity?, 223
Polarity
setting input, 71
setting output, 73
Power
available for SCPs, specifications, 305
requirements, specifications, 305
Power-on and *RST default settings, 59
PRESet
STATus.:PRESet, 273
Pre-setting PID variables, 80
Pre-setting PID variables and coefficients, 80
Primary-expression, 144
Problem, fixing the, 111
Problems, checking for, 110
Problems, resolving programming, 59
Process monitoring algorithm, 133
Profiles, implementing setpoint, 134
Program flow control, 140
Program structure and syntax, 147
Programming model, 57
Programming the trigger timer, 84
PTRansition
STATus.OPERation:PTRansition, 272
STATus.OPERation:PTRansition?, 273
STATus.QUEStionable:PTRansition, 277
STATus.QUEStionable:PTRansition?, 278

PULSe
SOURce:FUNC[:SHAPe]:PUL Se, 262

Q

Questionable data group examples, 98

Quick Reference, Command, 297

Quiet measurements, HINTS, 39

Quieter readings with amplifier SCPs, NOTE, 111

R
Rack Mount Terminal Panel Accessories, 52
RATio
ALGorithm[:EXPLicit]:SCAN:RATio, 172
ALGorithm[:EXPLicit]:SCAN:RATi0? 173
Reading
agorithm values from the CVT, 87
algorithm variables, 87
condition registers, 101
CVT elements, 120
event registers, 100
history mode values from the FIFO, 88
running algorithm values, 86
status groups directly, 100
the Latest FIFO Vaues (FIFO mode
OVER), 90
the status byte, 99
values from the FIFO, 88, 121
Recommended measurement connections, 39
Re-Execute * CAL? ,when to, 76
REFerence
SENSe:FUNCtion:CUSTom:REFerence, 244
SENSe:REFerence, 252
Reference
junction, 42
measurement before thermocouple
measurements, 69
temperature measurement, NOTE, 34
temperature sensing, 37
Reference RTD Accuracy Graph, 325
Reference Thermistor Accuracy Graph
5K Ohm Type, 323-324
Reference, Algorithm language, 137
Register, the status byte group’s enalé0
Registers
clearing event registers, 101
clearing the enable registers, 100
configuring the enable registers, 98
reading condition registers, 101
reading event registers, 100

432 Index

Rejection
Noise, 364
Relational-expression, 145
Relational-operator, 145
Removing the HP E1415 terminal module, 45
RESet
SENSe:DATA:CVTable:RESet, 236
SENSe:DATA:FIFO:RESet, 241
Reset
*RST, 291
Resetting the CVT, 88
Resetting
CAL:TARE, 107
the CVT, 88
Residual sensor offsets, 106
RESistance
CALibration:CONFigure:RESistance, 186
CALibration:VALue:RES stance, 192
SENSe:FUNCtion:RESistance, 246
Resources, accessing the E14139%/
Restrictions 75
ROUTe subsysteni229
ROUTe:SEQuence:DEFine229
ROUTe:SEQuence:POINts230
RTD Accuracy Graph326-327
RTD and thermistor measurements, 67
Running the algorithm, 129
Running, changing an algorithm
while it's running 126

S
SAMPle subsystem, 231
SAMPleTIMer, 231
SAMPleTIMer?, 232
SCALar
ALGorithm[:EXPLicit]:SCALar, 171
ALGorithm[:EXPLicit]:SCALar? 172
SCP, 344
grouping channels to signal conditionirgi
sense vs. output SCRE3
setting the HP E1505 current sour68
SCPI Command Format, 158
SCPs and Terminal Module, 35
Sdlecting
the FIFO mode81
the trigger sourceB2
trigger timer arm source3
Selection-statement, 146
Self test
and C-SCPI for MS-DOS (Rp93

error message838

how to read result293
Sending Datato the CVT and FIFO, 120
SENSe subsystem, 233
SENSe:CHANnNel:SETTling, 234
SENSe:CHANnNel:SETTIling?, 234
SENSeDATA:CVTable:RESet, 236
SENSeDATA:CVTable?, 235
SENSeDATA:FIFO:COUNt:HALF?, 238
SENSe:DATA:FIFO:COUNt?, 238
SENSe:DATA:FIFO:HALF? 238
SENSe:DATA:FIFO:MODE, 239
SENSeDATA:FIFO:MODE?, 240
SENSeDATA:FIFO:PART??, 240
SENSeDATA:FIFO:RESet, 241
SENSe:DATA:FIFO[:ALL]?, 237
SENSe:FREQuency:APERture, 241
SENSe:FREQuency:APERture?, 242
SENSe:FUNCtion:CONDition, 242
SENSe:FUNCtion:CUSTom, 243
SENSe:FUNCtion:CUSTom:REFerence, 244
SENSe:FUNCtion:CUSTom: TCouple, 245
SENSe:FUNCtion:FREQuency, 246
SENSe:FUNCtion:RESistance, 246
SENSe:FUNCtion:STRain, 248
SENSe:FUNCtion: TEM Perature, 249
SENSe:FUNCtion:TOTadlize, 251
SENSe:FUNCtion:VOLTage, 251
SENSe:REFerence, 252
SENSe:REFerence:CHANnNels, 254
SENSe:REFerence: TEM Perature, 254
SENSe:STRain:EXCitation, 255
SENSe:STRain:EXCitation?, 256
SENSe:STRain:GFACtor, 256
SENSe:STRain:GFACtor?, 256
SENSe:STRain:POISson, 257
SENSe:STRain:POISson?, 257
SENSe:STRain:UNSTrained, 258
SENSe:STRain:UNSTrained?, 258
SENSe:TOTalize:RESe:MODE, 259
SENSe:TOTalize:RESe:MODE?, 259
Sensing

4-20 mA 47

Reference temperature with the HPE143B
Separator, command, 158

Index 433

Sequence
A complete thermocouple measurement

command sequence, 70
ALG:DEFINE in the programming
sequence, 125
example command sequence, 92
operating, 122
overall, 122
the operating sequence, 86
Setting
algorithm execution frequency, 91
filter cutoff frequency, 62
input function, 72
input polarity, 71
output drive type, 73
output functions, 74
output polarity, 73
SCP gains, 62
the HP E1505 current source SCP. 63
the HP E1511 strain bridge SCP excitation
voltage, 64
the logical address switch, 20
the trigger counter, 84
Setting up
analog input and output channels, 62
digital input and output channels, 71
digital inputs, 71
digital outputs, 73
the trigger system, 82
Settings conflict
ARM:SOUR vs TRIG:SOUR, 182,284
SETTling
SENSe:CHANnNel:SETTling, 234
SENSe:CHANnNel:SETTIing?, 234
Settling characteristics, 110
SETup
CALibration:SETup, 188
CALibration:SETup?, 188
DIAGnostic:CALibration:SETup
[:MODE], 195
[:MODE]?, 196
Shield Connections
When to make, 363
Shielded wiring, IMPORTANT!, 34
SHUNt
OUTPut:SHUNt, 223
OUTPut:SHUNI?, 224
Signal, connection to channels, 39
Signals, outputting trigger, 85

SIZE
ALGorithm[:EXPLicit]:SIZE?, 173
MEMory:VME:SIZE, 217
MEMory:VME:SIZE?, 218
Size, determining an algorithms, 127
Soft front panel (VXIplug& play). See online help.
SOURce
ARM:SOURce, 183
ARM:SOURce?, 184
OUTPUt:TTLTrg:SOURCce, 224
TRIGger:SOURCce, 284
TRIGger:SOURce?, 285
SOURce subsystem, 261
Source, selecting the trigger, 82
Source, selecting trigger timer arm, 83
SOURceFM:STATe, 261
SOURce:FM:STATe?, 262
SOURce:FUNC[:SHAPe]:CONDition, 262
SOURce:FUNC[:SHAPe]:PUL Se, 262
SOURce:FUNC[:SHAPe]:SQUare, 263
SOURce:PULM[:STATe], 263
SOURce:PULM[:STATe]?, 264
SOURce:PUL Se:PERiod, 264
SOURce:PUL Se:PERiod?, 264
SOURce:PULSe:WIDTh, 265
SOURce:PULSeWIDTh?, 265
Sources, arm and trigger, 82
Special
considerations, 107
HP E1415 reserved keywords, 138
identifiers for channels, 139
Specifications, 305
Common mode rejection, 306
External Trigger Input, 305
Input impedance, 306
Maximum common mode voltage, 306
Maximum input voltage, 306
Maximum tare cal. offset, 306
Maximum Update Rate, 305
Measurement accuracy DC Volts, 306
Measurement Ranges, 305
Measurement Resolution, 305
Module Cooling Requirements, 305
Module Power Available for SCPs, 305
Module Power Requirements, 305
On-board Current Source, 306
Temperature Accuracy, 307
Trigger Timer and Sample Timer
Accuracy, 305
Specifying the data format, 81

434 Index

SQUare
SOURce:FUNC[:SHAPe]:SQUare, 263

Standard
EU operation, 103
event status group examples, 99
reserved keywords, 138

Standard Commands for Programmable Instruments,

SCPI, 163
Starting the PID algorithm, 85
STATe
ALGorithm[:EXPLIcit][:STATe], 174
ALGorithm[:EXPLIcit][:STATe]?, 175
DIAGnostic:OTDectect[:STATe], 202
DIAGnostic:OTDectect[:STATe]?, 202
INPUt:FILTer[:LPASS|[:STAT¢g], 211
INPut:FILTer[:LPASS|[:STATE€]?, 212
MEMory:VME:STATe, 218
MEMory:VME:STATe?, 219
OUTPuUt:CURRent:STATe, 222
OUTPuUt: CURRent:STATEe?, 222
SOURCe:FM:STATe, 261
SOURce:FM:STATEe?, 262
SOURce:PULM[:STATe], 263
SOURce:PULM[:STATe]? 264
Statement, 146
Statement, algorithm language
writecvt(), 120
writefifo(), 121
Statement-list, 146
Statements, 140
Statements and functions, intrinsic
abs(expression), 140
interrupt(), 121, 140
max(expressionl,expression2), 140
min(expressionl,expression2), 140
writeboth(expression,cvt_element), 140
writecvt(expression,cvt_element), 120, 140
writefifo(expression), 121, 140
Static state (CONDition) function, 72, 74
STATus subsystem, 267
Status variable, 79
STATus.OPERation:CONDition?, 269
STATus.OPERation:ENABIe, 270
STATus.OPERation:ENABIe?, 271
STATus.OPERation:EVENt?, 271
STATus.OPERation:NTRansition, 271
STATus.OPERation:NTRansition?, 272
STATus.OPERation:PTRansition, 272
STATus.OPERation:PTRansition?, 273
STATus.PRESet, 273

STATus.QUEStionable:CONDition?, 274
STATus.QUEStionable.ENABIe, 275
STATus:QUEStionable.ENABI€e?, 275
STATus:QUEStionable:EVENt?, 276
STATus:QUEStionableNTRansition, 276
STATus.QUEStionable:NTRansition?, 277
STATus.QUEStionable:PTRansition, 277
STATus.QUEStionable:PTRansition?, 278
Storage, defining data, 81
STORe

CALibration:STORe, 189
STRain

SENSe:FUNCtion:STRain, 248
Structure, overall program, 150
Structures, data, 141
Subsystem

ABORT, 164

Algorithm, 165

ARM, 182

CALibration, 185

DIAGnhostic, 195

FETCh? 204

FORMat, 206

INITiate, 209

INPut, 210

MEMory, 216

OUTPut, 220

ROUTe, 229

SAMPle 231

SENSe, 233

SOURCce, 261

STATus, 267

SYSTem, 279

TRIGger, 281
Summary, language syntax, 143
Supplying the reference temperature, 70
Swapping, defining an algorithm for, 126
Switch, setting the logical address, 20
Symbols, the operations, 148
Syntax, Variable Command, 159
System

setting up the trigger system, 82

using the status system, 95

wiring offsets, 106
SY STem subsystem, 279
SYSTem:CTYPe?, 279
SY STem:ERRor?, 279
SYSTem:VERSion?, 280

Index

435

T
Tables
creating EU conversion, 104
custom EU, 103
loading custom EU, 104
TARE
CALibration:TARE, 190
CALibration:TARE:RESet, 191
CALibration:TARE? 192

DIAGnhostic:CALibration: TARe[:OTDetect]

:MODE, 196
TCouple
SENSe:FUNCtion:CUSTom: TCouple, 245
Techniques
Wiring and noise reduction, 362
TEM Perature
DIAGnostic:CUSTum:REFerence
:TEMPerature, 199
SENSe:FUNCtion: TEMPerature, 249
SENSe:REFerence: TEM Perature, 254
Temperature
accuracy specifications, 307
measuring the reference temperature, 69
supplying the reference temperature, 70
Terminal block considerationsfor TC
measurements, 38
Terminal Blocks, 345
Terminal Module, 345
Attaching and removing the HP E1415, 45
Attaching the HP E1415, 45
Crimp-and-insert option, 49
Layout, 35
Option A3E, 49
options, 49
Removing the HP E1415, 45
Wiring and attaching the, 43
wiring maps, 48
The algorithm execution environment, 115
The arithmetic operators, 148
The comparison operators, 148
The logical operators, 148
The main function, 115
The operating sequence, 86
The operations symbols, 148
The pre-defined PIDA algorithm, 77
The pre-defined PIDB algorithm, 77
The static modifier, 141
The status byte group’s enable regisfiélO
Thermistor

and RTD measurements, 67

Connecting the on-board, 42
Thermistor Accuracy Graph

10K Ohm Type, 332-333

2250 Ohm Type, 328-329

5K Ohm Type, 330-331
Thermocouple Accuracy Graph

Type E (0-800C), 310-311

Type E (-200-800C), 308-309

Type EExtended, 312-313

TypeJ, 314-315

TypeK, 316

TypeR, 317-318

Type S, 319-320

Type T, 321-322
Thermocouple measurements, 68
Thermocouple reference temperature

compensation, 68

Thermocouples and CAL:TARE, 106
TIME

ALGorithm[:EXPLicit]:TIME, 175
Time relationship of readingsin FIFO, 121
Timer

SAMPleTIMer, 231

SAMPleTIMer?, 232
Timer, programming the trigger, 84
TIMer?

TRIGger:TIMer?, 286
TIMerTRIGger:TIMer, 285
Timing of loops, 86
TOTdlize

SENSe:FUNCtion:TOTalize, 251
Totalizer function, 72
Transducers, detecting open, 108
TRIGger subsystem, 281
trigger system

ABORt subsystem, 164

ARM subsystem, 182

INITiate subsystem, 209

TRIGger subsystem, 281
Trigger Timer and Sample Timer Accuracy,

specifications, 305

Trigger, variable width pulse per, 74
TRIGger:COUNt, 283
TRIGger:COUNt?, 283
TRIGger:SOURce, 284
TRIGger:SOURce?, 285
TRIGger:TIMer, 285
TRIGger:TIMer?, 286
TRIGger[:IMMediate], 283

436 Index

TTLTrg
OUTPUt:TTLTrg[:STAT€], 226
OUTPUt: TTLTrg[:STATE€]?, 226
SOURce
OUTPUt: TTLTrg:SOURCce?, 225
Tuning, PID agorithm, 95
TYPe
OUTPuUt:TYPE, 226
OUTPUt:TYPE?, 227
Type, setting output drive, 73
Types, data, 140

U

Unary
arithmetic operator, 148
logical operator, 139
operators, 139
Unary-expression, 144
Unary-operator, 144
Unexpected channel offsets or overloads, 108
UNSTrained
SENSe:STRain:UNSTrained, 258
SENSe:STRain:UNSTrained?, 258
Updating
the algorithm variables, 90
the algorithm variables and coefficients, 90
the status system and VX1 interrupts, 101
Usage, example language, 115
Using the status system, 95

V
Value types
parameter data, 162
returned, 162
Values, assigning, 147
Values, reading running algorithm, 86
Variable
Command Syntax, 159
frequency square-wave output (FM), 75
the status variable, 79
width pulse per trigger, 74
width pulses at fixed frequency (PWM), 74
Variables
communication using global, 131
declaring, 147
global, 143
initializing, 120
modifying running algorithm, 90
reading algorithm, 87

Verifying a successful configuration, 27
VERSIion
DIAGnhostic:VERSIon?, 203
SYSTem:VERSion?, 280
Voids Warranty
Cutting Input Protect Jumper, 25
VOLTage
AMPLitude
OUTPut:VOLTage:AMPLitude, 227
OUTPut:VOLTage:AMPLitude? 228
CALibration:CONFigureVOLTage, 187
SENSe:FUNCtion:VOLTage, 251
Voltage
CALibration:VALueVOLTage 193
Voltage, setting the HP E1511 strain bridge SCP
excitation, 64
V XlIplug& play. See online help.

w

Warranty
Voided by cutting Input Protect Jumper, 25
What * CAL?does, 76
What is a custom algorithm?, 114
When to make shield connections, 363
When to re-execute *CAL?, 76
Where to go next, 151
Which FIFO mode?, 89
WIDTh
SOURce:PULSeWIDTh, 265
SOURce:PULSeWIDTh?, 265
WINDow
ALGorithm:UPDate:WINDow, 180
ALGorithm:UPDatee WINDow?, 181
Wiring
and attaching the terminal module, 43
maps, erminal Module, 48
planning for thermocouple, 34
planning layout, 31
signal connection, 39
the terminal module, 43
Wiring techniques, for noise reduction, 362
writeboth(expression,cvt_element), 140
writecvt(expression,cvt_element), 120, 140
writefifo(expression), 121, 140

Index 437

Writing
the algorithm, 129
valuesto CVT eements, 120
valuesto the FIFO, 121

Z

ZERO?
CALibration:ZERO? 194

438 Index

	Contents
	HEWLETT-PACKARD WARRANTY STATEMENT
	Trademark Information
	Declaration of Conformity
	Safety Symbols
	WARNINGS
	Reader Comment Sheet

	Chapter 1 Getting Started
	About this Chapter
	Configuring the HP�E1415
	Setting the Logical Address Switch
	Installing Signal Conditioning Plug-ons
	Disabling the Input Protect Feature (optional)
	Disabling Flash Memory Access (optional)

	Instrument Drivers
	About Example Programs
	Verifying a Successful Configuration

	Chapter 2 Field Wiring
	About This Chapter
	Planning Your Wiring Layout
	SCP Positions and Channel Numbers
	Sense SCPs and Output SCPs
	Planning for Thermocouple Measurements

	Terminal Modules
	The SCPs and Terminal Module
	Terminal Module Layout

	Reference Temperature Sensing with the HP�E1415
	Preferred Measurement Connections
	Connecting the On-board Thermistor
	Wiring and Attaching the Terminal Module
	Attaching/Removing the HP E1415 Terminal Module
	Adding Components to the Terminal Module
	Terminal Module Wiring Map
	Terminal Module Options
	Option A3E
	Option A3F

	Faceplate Connector Pin-Signal Lists

	Chapter 3 Programming the HP E1415 for PID Control
	About This Chapter
	Overview of the HP�E1415 Algorithmic Loop Controller
	Operational Overview

	Programming Model
	Executing the Programming Model
	Power-on and *RST Default Settings

	Setting up Analog Input and Output Channels
	Configuring Programmable Analog SCP Parameters
	Linking Input Channels to EU Conversion
	Linking Output Channels to Functions

	Setting up Digital Input and Output Channels
	Setting up Digital Inputs
	Setting up Digital Outputs

	Performing Channel Calibration (Important!)
	Defining Standard PID Algorithms
	The Pre-defined PIDA Algorithm
	The Pre-defined PIDB Algorithm
	Defining a PID with ALG:DEFINE

	Pre-setting PID Variables and Coefficients
	Pre-setting PID variables

	Defining Data Storage
	Specifying the Data Format
	Selecting the FIFO Mode

	Setting up the Trigger System
	Arm and Trigger Sources
	Programming the Trigger Timer
	Setting the Trigger Counter
	Outputting Trigger Signals

	INITiating/Running Algorithms
	Starting the PID Algorithm
	The Operating Sequence

	Reading Running Algorithm Values
	Reading Algorithm Variables
	Reading Algorithm Values From the CVT
	Reading History Mode Values From the FIFO

	Modifying Running Algorithm Variables
	Updating the Algorithm Variables and Coefficients
	Enabling and Disabling Algorithms
	Setting Algorithm Execution Frequency

	Example Command Sequence
	A Quick-Start PID Algorithm Example
	PID Algorithm Tuning
	Using the Status System
	Enabling Events to be Reported in the Status Byte
	Reading the Status Byte
	Clearing the Enable Registers
	The Status Byte Group’s Enable Register
	Reading Status Groups Directly

	HP E1415 Background Operation
	Updating the Status System and VXIbus Interrupts
	Creating and Loading Custom EU Conversion Tables
	Compensating for System Offsets
	Special Considerations

	Detecting Open Transducers
	More On Auto Ranging
	Settling Characteristics
	Background
	Checking for Problems
	Fixing the Problem

	Chapter 4 Creating and Running Custom Algorithms
	About This Chapter
	Describing the HP�E1415 Closed Loop Controller
	What is a Custom Algorithm?
	Overview of the Algorithm Language
	Example Language Usage

	The Algorithm Execution Environment
	The Main Function
	How Your Algorithms Fit In

	Accessing the E1415's Resources
	Accessing I/O Channels
	Defining and Accessing Global Variables
	Determining First Execution (First_loop)
	Initializing Variables
	Sending Data to the CVT and FIFO
	Setting a VXIbus Interrupt
	Determining Your Algorithm's Identity (ALG_NUM)
	Calling User Defined Functions

	Operating Sequence
	Overall Sequence
	Algorithm Execution Order

	Defining Custom Algorithms (ALG:DEF)
	ALG:DEFINE in the Programming Sequence
	ALG:DEFINE's Three Data Formats
	Changing an Algorithm While it's Running

	A Very Simple First Algorithm
	Writing the Algorithm
	Running the Algorithm

	Modifying a Standard PID Algorithm
	PIDA with digital On-Off Control

	Algorithm to Algorithm Communication
	Communication Using Channel Identifiers
	Communication Using Global Variables

	Non-Control Algorithms
	Data Acquisition Algorithm
	Process Monitoring Algorithm

	Implementing Setpoint Profiles

	Chapter 5 Algorithm Language Reference
	Language Reference
	Standard Reserved Keywords
	Special HP�E1415 Reserved Keywords
	Identifiers
	Special Identifiers for Channels
	Operators
	Intrinsic Functions and Statements
	Program Flow Control
	Data Types
	Data Structures
	Bitfield Access

	Language Syntax Summary
	Program Structure and Syntax
	Declaring Variables
	Assigning Values
	The Operations Symbols
	Conditional Execution
	Comment Lines
	Overall Program Structure
	Where to go Next

	Chapter 6 HP�E1415 Command Reference
	Using This Chapter
	Overall Command Index
	Command Fundamentals
	SCPI Command Reference
	ABORt
	ALGorithm
	ALGorithm[:EXPLicit]:ARRay
	ALGorithm[:EXPLicit]:ARRay?
	ALGorithm[:EXPLicit]:DEFine
	ALGorithm[:EXPLicit]:SCALar
	ALGorithm[:EXPLicit]:SCALar?
	ALGorithm[:EXPLicit]:SCAN:RATio
	ALGorithm[:EXPLicit]:SCAN:RATio?
	ALGorithm[:EXPLicit]:SIZE?
	ALGorithm[:EXPLicit][:STATe]
	ALGorithm[:EXPLicit][:STATe]?
	ALGorithm[:EXPLicit]:TIME?
	ALGorithm:FUNCtion:DEFine
	ALGorithm:OUTPut:DELay>
	ALGorithm:OUTPut:DELay?
	ALGorithm:UPDate[:IMMediate]
	ALGorithm:UPDate:CHANnel
	ALGorithm:UPDate:WINDow
	ALGOrithm:UPDate:WINDow?

	ARM
	ARM[:IMMediate]
	ARM:SOURce
	ARM:SOURce?

	CALibration
	CALibration:CONFigure:RESistance
	CALibration:CONFigure:VOLTage
	CALibration:SETup
	CALibration:SETup?
	CALibration:STORe
	CALibration:TARE
	CALibration:TARE:RESet
	CALibration:TARE?
	CALibration:VALue:RESistance
	CALibration:VALue:VOLTage
	CALibration:ZERO?

	DIAGnostic
	DIAGnostic:CALibration:SETup[:MODE]
	DIAGnostic:CALibration:SETup[:MODE]?
	 DIAGnostic:CALibration:TARE[:OTDetect]:MODE
	DIAGnostic:CALibration:TARE[:OTDetect]:MODE?
	DIAGnostic:CHECksum?
	DIAGnostic:CUSTom:LINear
	DIAGnostic:CUSTom:PIECewise
	DIAGnostic:CUSTom:REFerence:TEMPerature
	DIAGnostic:FLOor[:CONFigure]
	DIAGnostic:FLOor:DUMP
	DIAGnostic:IEEE
	DIAGnostic:IEEE?
	DIAGnostic:INTerrupt[:LINe]
	DIAGnostic:INTerrupt[:LINe]?
	DIAGnostic:OTDetect[:STATe]
	DIAGnostic:OTDetect[:STATe]?
	DIAGnostic:QUERy:SCPREAD?
	DIAGnostic:VERSion?

	FETCh?
	FORMat
	FORMat[:DATA]
	FORMat[:DATA]?

	INITiate
	INITiate[:IMMediate]

	INPut
	INPut:FILTer[:LPASs]:FREQuency
	INPut:FILTer[:LPASs]:FREQuency?
	INPut:FILTer[:LPASs][:STATe]
	INPut:FILTer[:LPASs][:STATe]?
	INPut:GAIN
	INPut:GAIN?
	INPut:LOW
	INPut:LOW?
	INPut:POLarity
	INPut:POLarity?

	MEMory
	MEMory:VME:ADDRess
	MEMory:VME:ADDRess?
	MEMory:VME:SIZE
	MEMory:VME:SIZE?
	MEMory:VME:STATe
	MEMory:VME:STATe?

	OUTPut
	OUTPut:CURRent:AMPLitude
	OUTPut:CURRent:AMPLitude?
	OUTPut:CURRent[:STATe]
	OUTPut:CURRent[:STATe]?
	OUTPut:POLarity
	OUTPut:POLarity?
	OUTPut:SHUNt
	OUTPut:SHUNt?
	OUTPut:TTLTrg:SOURce
	OUTPut:TTLTrg:SOURce?
	OUTPut:TTLTrg<n>[:STATe]
	OUTPut:TTLTrg<n>[:STATe]?
	OUTPut:TYPE
	OUTPut:TYPE?
	OUTPut:VOLTage:AMPLitude
	OUTPut:VOLTage:AMPLitude?

	ROUTe
	ROUTe:SEQuence:DEFine?
	ROUTe:SEQuence:POINts?

	SAMPle
	SAMPle:TIMer
	SAMPle:TIMer?

	[SENSe]
	[SENSe:]CHANnel:SETTling
	[SENSe:]CHANnel:SETTling?
	[SENSe:]DATA:CVTable?
	[SENSe:]DATA:CVTable:RESet
	[SENSe:]DATA:FIFO[:ALL]?
	[SENSe:]DATA:FIFO:COUNt?
	[SENSe:]DATA:FIFO:COUNt:HALF?
	[SENSe:]DATA:FIFO:HALF?
	[SENSe:]DATA:FIFO:MODE
	[SENSe:]DATA:FIFO:MODE?
	[SENSe:]DATA:FIFO:PART?
	[SENSe:]DATA:FIFO:RESet
	[SENSe:]FREQuency:APERture
	[SENSe:]FREQuency:APERture?
	[SENSe:]FUNCtion:CONDition
	[SENSe:]FUNCtion:CUSTom
	[SENSe:]FUNCtion:CUSTom:REFerence
	[SENSe:]FUNCtion:CUSTom:TCouple
	[SENSe:]FUNCtion:FREQuency
	[SENSe:]FUNCtion:RESistance
	[SENSe:]FUNCtion:STRain:FBENding
	[SENSe:]FUNCtion:STRain:FBPoisson
	[SENSe:]FUNCtion:STRain:FPOisson
	[SENSe:]FUNCtion:STRain:HBENding
	[SENSe:]FUNCtion:STRain:HPOisson
	[SENSe:]FUNCtion:STRain[:QUARter]
	[SENSe:]FUNCtion:TEMPerature
	[SENSe:]FUNCtion:TOTalize
	[SENSe:]FUNCtion:VOLTage[:DC]
	[SENSe:]REFerence
	[SENSe:]REFerence:CHANnels
	[SENSe:]REFerence:TEMPerature
	[SENSe:]STRain:EXCitation
	[SENSe:]STRain:EXCitation?
	[SENSe:]STRain:GFACtor
	[SENSe:]STRain:GFACtor?
	[SENSe:]STRain:POISson
	[SENSe:]STRain:POISson?
	[SENSe:]STRain:UNSTrained
	[SENSe:]STRain:UNSTrained?
	[SENSe:]TOTalize:RESet:MODE
	[SENSe:]TOTalize:RESet:MODE?

	SOURce
	SOURce:FM[:STATe]
	SOURce:FM:STATe?
	SOURce:FUNCtion[:SHAPe]:CONDition
	SOURce:FUNCtion[:SHAPe]:PULSe
	SOURce:FUNCtion[:SHAPe]:SQUare
	SOURce:PULM[:STATe]
	SOURce:PULM:STATe?
	SOURce:PULSe:PERiod
	SOURce:PULSe:PERiod?
	SOURce:PULSe:WIDTh
	SOURce:PULSe:WIDTh?

	STATus
	The Operation Status Group
	STATus:OPERation:CONDition?
	STATus:OPERation:ENABle
	STATus:OPERation:ENABle?
	STATus:OPERation[:EVENt]?
	STATus:OPERation:NTRansition
	STATus:OPERation:NTRansition?
	STATus:OPERation:PTRansition
	STATus:OPERation:PTRansition?
	STATus:PRESet

	The Questionable Data Group
	STATus:QUEStionable:CONDition?
	STATus:QUEStionable:ENABle
	STATus:QUEStionable:ENABle?
	STATus:QUEStionable[:EVENt]?
	STATus:QUEStionable:NTRansition
	STATus:QUEStionable:NTRansition?
	STATus:QUEStionable:PTRansition
	STATus:QUEStionable:PTRansition?

	SYSTem
	SYSTem:CTYPe?
	SYSTem:ERRor?
	SYSTem:VERSion?

	TRIGger
	TRIGger:COUNt
	TRIGger:COUNt?
	TRIGger[:IMMediate]
	TRIGger:SOURce
	TRIGger:SOURce?
	TRIGger:TIMer[:PERiod]
	TRIGger:TIMer[:PERiod]?

	IEEE-488.2 Common�Command�Reference
	*CAL?
	*CLS
	*DMC
	*EMC
	*EMC?
	*ESE
	*ESE?
	*ESR?
	*GMC?
	*IDN?
	*LMC?
	*OPC
	*OPC?
	*PMC
	*RMC
	*RST
	*SRE
	*SRE?
	*STB?
	*TRG
	*TST?
	*WAI

	Command Quick Reference

	Appendix A Specifications
	Appendix B Error Messages
	Appendix C Glossary
	Appendix D PID Algorithm Listings
	PIDA Listing
	PIDB Listing
	PIDC Listing

	Appendix E Wiring and Noise Reduction Methods
	Separating Digital and Analog SCP Signals
	Recommended Wiring and Noise Reduction Techniques
	Wiring Checklist
	HP E1415 Guard Connections
	Common Mode Voltage Limits
	When to Make Shield Connections

	Noise Due to Inadequate Card Grounding
	HP E1415 Noise Rejection
	Normal Mode Noise (Enm)
	Common Mode Noise (Ecm)
	Keeping Common Mode Noise out of the Amplifier
	Reducing Common Mode Rejection Using Tri-Filar Transformers

	Appendix F Generating User Defined Functions
	Introduction
	Haversine Example.
	Limitations
	Program Listings.

	Appendix G Example Program Listings
	simp_pid.cs
	file_alg.cs
	swap.cs
	tri_sine.cs

	Index

